Search Results

Now showing 1 - 2 of 2
  • Item
    Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use
    (Amsterdam [u.a.] : Elsevier Science, 2020) Walsh, Kerry B.; Blasco, José; Zude-Sasse, Manuela; Sun, Xudong
    The application of visible (Vis; 400–750 nm) and near infrared red (NIR; 750–2500 nm) region spectroscopy to assess fruit and vegetables is reviewed in context of ‘point’ spectroscopy, as opposed to multi- or hyperspectral imaging. Vis spectroscopy targets colour assessment and pigment analysis, while NIR spectroscopy has been applied to assessment of macro constituents (principally water) in fresh produce in commercial practice, and a wide range of attributes in the scientific literature. This review focusses to key issues relevant to the widespread implementation of Vis-NIR technology in the fruit sector. A background to the concepts and technology involved in the use of Vis-NIR spectroscopy is provided and instrumentation for in-field and in-line applications, which has been available for two and three decades, respectively, is described. A review of scientific effort is made for the period 2015 - February 2020, in terms of the application areas, instrumentation, chemometric methods and validation procedures, and this work is critiqued through comparison to techniques in commercial use, with focus to wavelength region, optical geometry, experimental design, and validation procedures. Recommendations for future research activity in this area are made, e.g., application development with consideration of the distribution of the attribute of interest in the product and the matching of optically sampled and reference method sampled volume; instrumentation comparisons with consideration of repeatability, optimum optical geometry and wavelength range). Recommendations are also made for reporting requirements, viz. description of the application, the reference method, the composition of calibration and test populations, chemometric reporting and benchmarking to a known instrument/method, with the aim of maximising useful conclusions from the extensive work being done around the world.
  • Item
    Validation study for measuring absorption and reduced scattering coefficients by means of laser-induced backscattering imaging
    (Amsterdam [u.a.] : Elsevier Science, 2019) Zude-Sasse, Manuela; Hashim, Norhashila; Hass, Roland; Polley, Nabarun; Regen, Christian
    Decoupling of optical properties appears challenging, but vital to get better insight of the relationship between light and fruit attributes. In this study, nine solid phantoms capturing the ranges of absorption (μa) and reduced scattering (μs’) coefficients in fruit were analysed non-destructively using laser-induced backscattering imaging (LLBI) at 1060 nm. Data analysis of LLBI was carried out on the diffuse reflectance, attenuation profile obtained by means of Farrell's diffusion theory either calculating μa [cm−1] and μs’ [cm−1] in one fitting step or fitting only one optical variable and providing the other one from a destructive analysis. The nondestructive approach was approved when calculating one unknown coefficient non-destructively, while no ability of the method was found to analysis both, μa and μs’, non-destructively. Setting μs’ according to destructive photon density wave (PDW) spectroscopy and fitting μa resulted in root mean square error (rmse) of 18.7% in comparison to fitting μs’ resulting in rmse of 2.6%, pointing to decreased measuring uncertainty, when the highly variable μa was known. The approach was tested on European pear, utilizing destructive PDW spectroscopy for setting one variable, while LLBI was applied for calculating the remaining coefficient. Results indicated that the optical properties of pear obtained from PDW spectroscopy as well as LLBI changed concurrently in correspondence to water content mainly. A destructive batch-wise analysis of μs’ and online analysis of μa may be considered in future developments for improved fruit sorting results, when considering fruit with high variability of μs’. © 2019 The Authors