Search Results

Now showing 1 - 2 of 2
  • Item
    Carbon consumption of developing fruit and the fruit bearing capacity of individual RoHo 3615 and Pinova apple trees
    (Lublin : IA PAS, 2020) Penzel, Martin; Lakso, Alan Neil; Tsoulias, Nikos; Zude-Sasse, Manuela
    This paper describes an approach to estimate the photosynthetic capacity and derive the optimum fruit number for each individual tree, in order to achieve a defined fruit size, which is named as the fruit bearing capacity of the tree. The estimation of fruit bearing capacity was carried out considering the total leaf area per tree as measured with a 2-D LiDAR laser scanner, LALiDAR, and key carbon-related variables of the trees including leaf gas exchange, fruit growth and respiration, in two commercial apple orchards. The range between minLALiDAR and maxLALiDAR was found to be 2.4 m on Pinova and 4.3 m on RoHo 3615 at fully developed canopy. The daily C requirement of the growing fruit and the associated leaf area demand, necessary to meet the average daily fruit C requirements showed seasonal variation, with maximum values in the middle of the growing period. The estimated fruit bearing capacity ranged from 33-95 fruit tree-1 and 45-121 fruit tree-1 on the trees of Pinova and RoHo 3615, respectively. This finding demonstrates sub-optimal crop load at harvest time in both orchards, above or below the fruit bearing capacity for individual trees. In conclusion, the LiDAR measurements of the leaf area combined with a carbon balance model allows for the estimation of fruit bearing capacity for individual trees for precise crop load management. © 2020 Polish Academy of Sciences. All rights reserved.
  • Item
    Seasonal changes in dendrometer-derived stem variation in apple trees grown in temperate climate
    (Lublin : IA PAS, 2022) Rezaei, Yousef; Zude-Sasse, Manuela; Herppich, Werner
    Studies of daily changes in tree trunk diameter provide valuable information concerning growth patterns and their relationships with varying environmental conditions. To date, very few experiments with fruit trees evaluated the effects of climate variation on trunk shrinkage and the duration of the contraction and recovery phases and of growth. In this study, electronic dendrometers continuously monitored trunk diameter and trunk water storage dynamics of drip-irrigated ‘Gala’ apple trees (Malus x domestica Borkh.) during three growing seasons, which differed significantly in temperature, precipitation, air humidity and solar irradiation. It was found that trunk diameter and meteorological variables were closely related, even when excluding the effects of soil water limitations. During each growing season, the durations of the daily contraction phase began to increase with increasing water vapour partial pressure deficit, and decreased again in autumn, when vapour partial pressure decreased. Throughout the season, the duration of the growth phase tended to change inversely to that of both contraction and recovery phase. The relationship between maximum trunk shrinkage and vapour partial pressure was higher post than pre harvest for all years studied. The duration of contraction, recovery, and growth phases may provide valuable information concerning seasonal changes and environmental drivers of water storage dynamics in apple trees.