Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Energy system developments and investments in the decisive decade for the Paris Agreement goals

2021-6-29, Bertram, Christoph, Riahi, Keywan, Hilaire, Jérôme, Bosetti, Valentina, Drouet, Laurent, Fricko, Oliver, Malik, Aman, Pupo Nogueira, Larissa, van der Zwaan, Bob, van Ruijven, Bas, van Vuuren, Detlef, Weitzel, Matthias, Dalla Longa, Francesco, de Boer, Harmen-Sytze, Emmerling, Johannes, Fosse, Florian, Fragkiadakis, Kostas, Harmsen, Mathijs, Keramidas, Kimon, Kishimoto, Paul Natsuo, Kriegler, Elmar, Krey, Volker, Paroussos, Leonidas, Saygin, Deger, Vrontisi, Zoi, Luderer, Gunnar

The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.

Loading...
Thumbnail Image
Item

Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models

2018, Krey, Volker, Guo, Fei, Kolp, Peter, Zhou, Wenji, Schaeffer, Roberto, Awasthy, Aayushi, Bertram, Christoph, de Boer, Harmen-Sytze, Fragkos, Panagiotis, Fujimori, Shinichiro, He, Chenmin, Iyer, Gokul, Keramidas, Kimon, Köberle, Alexandre C., Oshiro, Ken, Reis, Lara Aleluia, Shoai-Tehrani, Bianka, Vishwanathan, Saritha, Capros, Pantelis, Drouet, Laurent, Edmonds, James E., Garg, Amit, Gernaat, David E.H.J., Jiang, Kejun, Kannavou, Maria, Kitous, Alban, Kriegler, Elmar, Luderer, Gunnar, Mathur, Ritu, Muratori, Matteo, Sano, Fuminori, van Vuuren, Detlef P.

Integrated assessment models are extensively used in the analysis of climate change mitigation and are informing national decision makers as well as contribute to international scientific assessments. This paper conducts a comprehensive review of techno-economic assumptions in the electricity sector among fifteen different global and national integrated assessment models. Particular focus is given to six major economies in the world: Brazil, China, the EU, India, Japan and the US. The comparison reveals that techno-economic characteristics are quite different across integrated assessment models, both for the base year and future years. It is, however, important to recognize that techno-economic assessments from the literature exhibit an equally large range of parameters as the integrated assessment models reviewed. Beyond numerical differences, the representation of technologies also differs among models, which needs to be taken into account when comparing numerical parameters. While desirable, it seems difficult to fully harmonize techno-economic parameters across a broader range of models due to structural differences in the representation of technology. Therefore, making techno-economic parameters available in the future, together with of the technology representation as well as the exact definitions of the parameters should become the standard approach as it allows an open discussion of appropriate assumptions. © 2019 The Authors