Search Results

Now showing 1 - 3 of 3
  • Item
    Quantification of EGFR-HER2 Heterodimers in HER2-Overexpressing Breast Cancer Cells Using Liquid-Phase Electron Microscopy
    (Basel : MDPI, 2021) Peckys, Diana B.; Gaa, Daniel; de Jonge, Niels
    Currently, breast cancer patients are classified uniquely according to the expression level of hormone receptors, and human epidermal growth factor receptor 2 (HER2). This coarse classification is insufficient to capture the phenotypic complexity and heterogeneity of the disease. A methodology was developed for absolute quantification of receptor surface density ρR, and molecular interaction (dimerization), as well as the associated heterogeneities, of HER2 and its family member, the epidermal growth factor receptor (EGFR) in the plasma membrane of HER2 overexpressing breast cancer cells. Quantitative, correlative light microscopy (LM) and liquid-phase electron microscopy (LPEM) were combined with quantum dot (QD) labeling. Single-molecule position data of receptors were obtained from scanning transmission electron microscopy (STEM) images of intact cancer cells. Over 280,000 receptor positions were detected and statistically analyzed. An important finding was the subcellular heterogeneity in heterodimer shares with respect to plasma membrane regions with different dynamic properties. Deriving quantitative information about EGFR and HER2 ρR, as well as their dimer percentages, and the heterogeneities thereof, in single cancer cells, is potentially relevant for early identification of patients with HER2 overexpressing tumors comprising an enhanced share of EGFR dimers, likely increasing the risk for drug resistance, and thus requiring additional targeted therapeutic strategies.
  • Item
    Graphene Enclosure of Chemically Fixed Mammalian Cells for Liquid-Phase Electron Microscopy
    (Cambridge, MA : JoVE, 2020) Blach, Patricia; Keskin, Sercan; de Jonge, Niels
    A protocol is described for investigating the human epidermal growth factor receptor 2 (HER2) in the intact plasma membrane of breast cancer cells using scanning transmission electron microscopy (STEM). Cells of the mammalian breast cancer cell line SKBR3 were grown on silicon microchips with silicon nitride (SiN) windows. Cells were chemically fixed, and HER2 proteins were labeled with quantum dot nanoparticles (QDs), using a two-step biotin-streptavidin binding protocol. The cells were coated with multilayer graphene to maintain a hydrated state, and to protect them from electron beam damage during STEM. To examine the stability of the samples under electron beam irradiation, a dose series experiment was performed. Graphene-coated and non-coated samples were compared. Beam induced damage, in the form of bright artifacts, appeared for some non-coated samples at increased electron dose D, while no artifacts appeared on coated samples.
  • Item
    Strategy for optimizing experimental settings for studying low atomic number colloidal assemblies using liquid phase scanning transmission electron microscopy
    (Amsterdam : Elsevier Science, 2022) Kunnas, Peter; Moradi, Mohammad-Amin; Sommerdijk, Nico; de Jonge, Niels
    Observing processes of nanoscale materials of low atomic number is possible using liquid phase electron microscopy (LP-EM). However, the achievable spatial resolution (d) is limited by radiation damage. Here, we examine a strategy for optimizing LP-EM experiments based on an analytical model and experimental measurements, and develop a method for quantifying image quality at ultra low electron dose De using scanning transmission electron microscopy (STEM). As experimental test case we study the formation of a colloidal binary system containing 30 nm diameter SiO2 nanoparticles (SiONPs), and 100 nm diameter polystyrene microspheres (PMs). We show that annular dark field (DF) STEM is preferred over bright field (BF) STEM for practical reasons. Precise knowledge of the material's density is crucial for the calculations in order to match experimental data. To calculate the detectability of nano-objects in an image, the Rose criterion for single pixels is expanded to a model of the signal to noise ratio obtained for multiple pixels spanning the image of an object. Using optimized settings, it is possible to visualize the radiation-sensitive, hierarchical low-Z binary structures, and identify both components.