Search Results

Now showing 1 - 3 of 3
  • Item
    Bio-based building blocks from 5-hydroxymethylfurfural via 1-hydroxyhexane-2,5-dione as intermediate
    (Cambridge : RSC, 2019) Wozniak, Bartosz; Tin, Sergey; de Vries, Johannes G.
    The limits to the supply of fossil resources and their ever increasing use forces us to think about future scenarios for fuels and chemicals. The platform chemical 5-hydroxymethyl-furfural (HMF) can be obtained from biomass in good yield and has the potential to be converted in just a few steps into a multitude of interesting products. Over the last 20 years, the conversion of HMF to 1-hydroxyhexane-2,5-dione (HHD) has been studied by several groups. It is possible to convert HMF into HHD by hydrogenation/hydrolytic ring opening reaction in aqueous phase using various heterogeneous and homogeneous catalysts. This review addresses both the state of the art of HHD synthesis, including mechanistic aspects of its formation, as well as the recent progress in the application of HHD as a building block for many useful chemicals including pyrroles, cyclopentanone derivatives and triols. © 2019 The Royal Society of Chemistry.
  • Item
    Hydration of nitriles using a metal-ligand cooperative ruthenium pincer catalyst
    (Cambridge : RSC, 2019) Guo, Beibei; de Vries, Johannes G.; Otten, Edwin
    Nitrile hydration provides access to amides that are important structural elements in organic chemistry. Here we report catalytic nitrile hydration using ruthenium catalysts based on a pincer scaffold with a dearomatized pyridine backbone. These complexes catalyze the nucleophilic addition of H2O to a wide variety of aliphatic and (hetero)aromatic nitriles in tBuOH as solvent. Reactions occur under mild conditions (room temperature) in the absence of additives. A mechanism for nitrile hydration is proposed that is initiated by metal-ligand cooperative binding of the nitrile. This journal is © The Royal Society of Chemistry.
  • Item
    Scalable synthesis and polymerisation of a β-angelica lactone derived monomer
    (Cambridge : RSC, 2020) Dell'Acqua, Andrea; Stadler, Bernhard M.; Kirchhecker, Sarah; Tin, Sergey; de Vries, Johannes G.
    Bio-based levulinic acid is easily ring-closed to α-angelica lactone (α-AL). α-AL can be isomerized to the conjugated β-AL under the influence of base, but since this is an equilibrium mixture it is very hard to devise a scalable process that would give pure β-AL. This problem was circumvented by distilling the equilibrium mixture to obtain a 90 : 10 mixture of β-and α-AL in 88% yield. This mixture was used for Diels-Alder reactions on 3 terpenes and on cyclopentadiene in up to 100 g scale. The latter DA adduct was subjected to a ROMP reaction catalysed by the Grubbs II catalyst. The resulting polymer has some similarities to poly-norbornene but is more polar. The polymer can be processed into films with very good transparency. © The Royal Society of Chemistry.