Search Results

Now showing 1 - 5 of 5
  • Item
    Light-Regulated Angiogenesis via a Phototriggerable VEGF Peptidomimetic
    (Weinheim : Wiley-VCH, 2021) Nair, Roshna V.; Farrukh, Aleeza; del Campo, Aránzazu
    The application of growth factor based therapies in regenerative medicine is limited by the high cost, fast degradation kinetics, and the multiple functions of these molecules in the cell, which requires regulated delivery to minimize side effects. Here a photoactivatable peptidomimetic of the vascular endothelial growth factor (VEGF) that allows the light-controlled presentation of angiogenic signals to endothelial cells embedded in hydrogel matrices is presented. A photoresponsive analog of the 15-mer peptidomimetic Ac-KLTWQELYQLKYKGI-NH2 (abbreviated PQK) is prepared by introducing a 3-(4,5-dimethoxy-2-nitrophenyl)-2-butyl (DMNPB) photoremovable protecting group at the Trp4 residue. This modification inhibits the angiogenic potential of the peptide temporally. Light exposure of PQK modified hydrogels provide instructive cues to embedded endothelial cells and promote angiogenesis at the illuminated sites of the 3D culture, with the possibility of spatial control. PQK modified photoresponsive biomaterials offer an attractive approach for the dosed delivery and spatial control of pro-angiogenic factors to support regulated vascular growth by just using light as an external trigger.
  • Item
    Lighting the Path: Light Delivery Strategies to Activate Photoresponsive Biomaterials In Vivo
    (Weinheim : Wiley-VCH, 2021) Pearson, Samuel; Feng, Jun; del Campo, Aránzazu
    Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.
  • Item
    Regulating Bacterial Behavior within Hydrogels of Tunable Viscoelasticity
    (Weinheim : Wiley-VCH, 2022) Bhusari, Shardul; Sankaran, Shrikrishnan; del Campo, Aránzazu
    Engineered living materials (ELMs) are a new class of materials in which living organism incorporated into diffusive matrices uptake a fundamental role in material's composition and function. Understanding how the spatial confinement in 3D can regulate the behavior of the embedded cells is crucial to design and predict ELM's function, minimize their environmental impact and facilitate their translation into applied materials. This study investigates the growth and metabolic activity of bacteria within an associative hydrogel network (Pluronic-based) with mechanical properties that can be tuned by introducing a variable degree of acrylate crosslinks. Individual bacteria distributed in the hydrogel matrix at low density form functional colonies whose size is controlled by the extent of permanent crosslinks. With increasing stiffness and elastic response to deformation of the matrix, a decrease in colony volumes and an increase in their sphericity are observed. Protein production follows a different pattern with higher production yields occurring in networks with intermediate permanent crosslinking degrees. These results demonstrate that matrix design can be used to control and regulate the composition and function of ELMs containing microorganisms. Interestingly, design parameters for matrices to regulate bacteria behavior show similarities to those elucidated for 3D culture of mammalian cells.
  • Item
    Gelation Kinetics and Mechanical Properties of Thiol-Tetrazole Methylsulfone Hydrogels Designed for Cell Encapsulation
    (Weinheim : Wiley-VCH, 2022) de Miguel‐Jiménez, Adrián; Ebeling, Bastian; Paez, Julieta I.; Fink‐Straube, Claudia; Pearson, Samuel; del Campo, Aránzazu
    Hydrogel precursors that crosslink within minutes are essential for the development of cell encapsulation matrices and their implementation in automated systems. Such timescales allow sufficient mixing of cells and hydrogel precursors under low shear forces and the achievement of homogeneous networks and cell distributions in the 3D cell culture. The previous work showed that the thiol-tetrazole methylsulfone (TzMS) reaction crosslinks star-poly(ethylene glycol) (PEG) hydrogels within minutes at around physiological pH and can be accelerated or slowed down with small pH changes. The resulting hydrogels are cytocompatible and stable in cell culture conditions. Here, the gelation kinetics and mechanical properties of PEG-based hydrogels formed by thiol-TzMS crosslinking as a function of buffer, crosslinker structure and degree of TzMS functionality are reported. Crosslinkers of different architecture, length and chemical nature (PEG versus peptide) are tested, and degree of TzMS functionality is modified by inclusion of RGD cell-adhesive ligand, all at concentration ranges typically used in cell culture. These studies corroborate that thiol/PEG-4TzMS hydrogels show gelation times and stiffnesses that are suitable for 3D cell encapsulation and tunable through changes in hydrogel composition. The results of this study guide formulation of encapsulating hydrogels for manual and automated 3D cell culture.
  • Item
    Printed Degradable Optical Waveguides for Guiding Light into Tissue
    (Weinheim : Wiley-VCH, 2020) Feng, Jun; Zheng, Yijun; Bhusari, Shardul; Villiou, Maria; Pearson, Samuel; del Campo, Aránzazu
    Optogenetics and photonic technologies are changing the future of medicine. To implement light‐based therapies in the clinic, patient‐friendly devices that can deliver light inside the body while offering tunable properties and compatibility with soft tissues are needed. Here extrusion printing of degradable, hydrogel‐based optical waveguides with optical losses as low as 0.1 dB cm−1 at visible wavelengths is described. Core‐only and core‐cladding fibers are printed at room temperature from polyethylene glycol (PEG)‐based and PEG/Pluronic precursors, and cured by in situ photopolymerization. The obtained waveguides are flexible, with mechanical properties tunable within a tissue‐compatible range. Degradation times are also tunable by adjusting the molar mass of the diacrylate gel precursors, which are synthesized by linking PEG diacrylate (PEGDA) with varying proportions of DL‐dithiothreitol (DTT). The printed waveguides are used to activate photochemical and optogenetic processes in close‐to‐physiological environments. Light‐triggered migration of cells in a photoresponsive 3D hydrogel and drug release from an optogenetically‐engineered living material by delivering light across >5 cm of muscle tissue are demonstrated. These results quantify the in vitro performance, and reflect the potential of the printed degradable fibers for in vivo and clinical applications.