Search Results

Now showing 1 - 6 of 6
  • Item
    On the relationship between SiF4plasma species and sample properties in ultra low-k etching processes
    (New York, NY : American Inst. of Physics, 2020) Haase, Micha; Melzer, Marcel; Lang, Norbert; Ecke, Ramona; Zimmermann, Sven; van Helden, Jean-Pierre H.; Schulz, Stefan E.
    The temporal behavior of the molecular etching product SiF4 in fluorocarbon-based plasmas used for the dry etching of ultra low-k (ULK) materials has been brought into connection with the polymer deposition on the surface during plasma treatment within the scope of this work. For this purpose, time-resolved measurements of the density of SiF4 have been performed by quantum cascade laser absorption spectroscopy. A quantification of the non-linear time dependence was achieved by its characterization via a time constant of the decreasing SiF4 density over the process time. The time constant predicts how fast the stationary SiF4 density is reached. The higher the time constant is, the thicker the polymer film on top of the treated ultra low-k surface. A correlation between the time constant and the ULK damage was also found. ULK damage and polymer deposition were proven by Variable Angle Spectroscopic Ellipsometry and X-ray Photoelectron Spectroscopy. In summary, the observed decay of the etching product concentration over process time is caused by the suppressed desorption of the SiF4 molecules due to a more dominant adsorption of polymers. © 2020 Author(s).
  • Item
    Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel in cold wall reactor: influence of plasma conditions
    (Rio de Janeiro : Elsevier, 2020) Jafarpour, Saeed M.; Puth, Alexander; Dalke, Anke; Böcker, Jan; Pipa, AndreiV.; Röpcke, Jürgen; van Helden, Jean-Pierre H.; Biermann, Horst
    Low temperature plasma nitrocarburizing processes are widely used surface treatment techniques to improve the surface hardness and wear resistance of stainless steels without loss of their excellent corrosion resistance. In the present study, plasma nitrocarburizing based on the active screen technology was applied in an industrial-scale cold wall reactor for the treatment of AISI 316L. Different technological aspects of a cold wall active screen plasma nitrocarburizing (ASPNC) reactor are addressed. The current study compiles recent achievements for the ASPNC treatment using an active screen made of carbon fibre-reinforced carbon under varying plasma conditions. In addition, it is shown that utilizing an active screen made of carbon opens up the possibility to control the structural properties of expanded austenite by the variation of the plasma conditions. It is revealed that for the ASPNC treatment using an active carbon screen, the high reactivity of the generated plasma at the carbon surface suppresses the requirement to apply a bias discharge.
  • Item
    Effects of Plasma-Chemical Composition on AISI 316L Surface Modification by Active Screen Nitrocarburizing Using Gaseous and Solid Carbon Precursors
    (Basel : MDPI, 2021) Jafarpour, Saeed M.; Pipa, Andrei V.; Puth, Alexander; Dalke, Anke; Röpcke, Jürgen; van Helden, Jean-Pierre H.; Biermann, Horst
    Low-temperature plasma nitrocarburizing treatments are applied to improve the surface properties of austenitic stainless steels by forming an expanded austenite layer without impairing the excellent corrosion resistance of the steel. Here, low-temperature active screen plasma nitrocarburizing (ASPNC) was investigated in an industrial-scale cold-wall reactor to compare the effects of two active screen materials: (i) a steel active screen with the addition of methane as a gaseous carbon-containing precursor and (ii) an active screen made of carbon-fibre-reinforced carbon (CFC) as a solid carbon precursor. By using both active screen materials, ASPNC treatments at variable plasma conditions were conducted using AISI 316L. Moreover, insight into the plasma-chemical composition of the H2-N2 plasma for both active screen materials was gained by laser absorption spectroscopy (LAS) combined with optical emission spectroscopy (OES). It was found that, in the case of a CFC active screen in a biased condition, the thickness of the nitrogen-expanded austenite layer increased, while the thickness of the carbon-expanded austenite layer decreased compared to the non-biased condition, in which the nitrogen- and carbon-expanded austenite layers had comparable thicknesses. Furthermore, the crucial role of biasing the workload to produce a thick and homogeneous expanded austenite layer by using a steel active screen was validated.
  • Item
    Influence of oxygen admixture on plasma nitrocarburizing process and monitoring of an active screen plasma treatment
    (Basel : MDPI, 2021) Böcker, Jan; Dalke, Anke; Puth, Alexander; Schimpf, Christian; Röpcke, Jürgen; van Helden, Jean-Pierre H.; Biermann, Horst
    The effect of a controlled oxygen admixture to a plasma nitrocarburizing process using active screen technology and an active screen made of carbon was investigated to control the carburizing potential within the plasma-assisted process. Laser absorption spectroscopy was used to determine the resulting process gas composition at different levels of oxygen admixture using O2 and CO2, respectively, as well as the long-term trends of the concentration of major reaction products over the duration of a material treatment of ARMCO® iron. The short-term studies of the resulting process gas composition, as a function of oxygen addition to the process feed gases N2 and H2, showed that a stepwise increase in oxygen addition led to the formation of oxygen-containing species, such as CO, CO2, and H2 O, and to a significant decrease in the concentrations of hydrocarbons and HCN. Despite increased oxygen concentration within the process gas, no oxygen enrichment was observed in the compound layer of ARMCO® iron; however, the diffusion depth of nitrogen and carbon increased significantly. Increasing the local nitrogen concentration changed the stoichiometry of the ε-Fe3 (N,C)1+x phase in the compound layer and opens up additional degrees of freedom for improved process control.
  • Item
    High-Performance GaAs/AlAs Terahertz Quantum-Cascade Lasers for Spectroscopic Applications
    (New York, NY : IEEE, 2020) Schrottke, Lutz; Lü, Xiang; Röben, Benjamin; Biermann, Klaus; Hagelschuer, Till; Wienold, Martin; Hübers, Heinz-Wilhelm; Hannemann, Mario; van Helden, Jean-Pierre H.; Röpcke, Jürgen; Grahn, Holger T.
    We have developed terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures for application-defined emission frequencies between 3.4 and 5.0 THz. Due to their narrow line width and rather large intrinsic tuning range, these THz QCLs can be used as local oscillators in airborne or satellite-based astronomical instruments or as radiation sources for high-resolution absorption spectroscopy, which is expected to allow for a quantitative determination of the density of atoms and ions in plasma processes. The GaAs/AlAs THz QCLs can be operated in mechanical cryocoolers and even in miniature cryocoolers due to the comparatively high wall-plug efficiency of around 0.2% and typical current densities below 500 A/cm$^2$. These lasers emit output powers of more than 1 mW at operating temperatures up to about 70 K, which is sufficient for most of the abovementioned applications. © 2011-2012 IEEE.
  • Item
    RES-Q-Trace: A Mobile CEAS-Based Demonstrator for Multi-Component Trace Gas Detection in the MIR
    (Basel : MDPI, 2018-6-27) Lang, Norbert; Macherius, Uwe; Zimmermann, Henrik; Glitsch, Sven; Wiese, Mathias; Röpcke, Jürgen; van Helden, Jean-Pierre H.
    Sensitive trace gas detection plays an important role in current challenges occurring in areas such as industrial process control and environmental monitoring. In particular, for medical breath analysis and for the detection of illegal substances, e.g., drugs and explosives, a selective and sensitive detection of trace gases in real-time is required. We report on a compact and transportable multi-component system (RES-Q-Trace) for molecular trace gas detection based on cavity-enhanced techniques in the mid-infrared (MIR). The RES-Q-Trace system can operate four independent continuous wave quantum or interband cascade lasers each combined with an optical cavity. Twice the method of off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) was used, twice the method of optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS), respectively. Multi-functional software has been implemented (i) for the general system control; (ii) to drive the four different laser sources and (iii) to analyze the detector signals for concentration determination of several molecular species. For the validation of the versatility and the performance of the RES-Q-Trace instrument the species NO, N2O, CH4, C2H4 and C3H6O, with relevance in the fields of breath gas analysis and the detection of explosives have been monitored in the MIR with detection limits at atmospheric pressure in the ppb and ppt range.