Search Results

Now showing 1 - 10 of 15
  • Item
    Magnon spectrum of the helimagnetic insulator Cu2OSeO3
    (London : Nature Publishing Group, 2016) Portnichenko, P.Y.; Romhányi, J.; Onykiienko, Y.A.; Henschel, A.; Schmidt, M.; Cameron, A.S.; Surmach, M.A.; Lim, J.A.; Park, J.T.; Schneidewind, A.; Abernathy, D.L.; Rosner, H.; van den Brink, Jeroen; Inosov, D.S.
    Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases.
  • Item
    Strongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li2IrO3
    (London : Nature Publishing Group, 2016) Nishimoto, Satoshi; Katukuri, Vamshi M.; Yushankhai, Viktor; Stoll, Hermann; Rößler, Ulrich K.; Hozoi, Liviu; Rousochatzakis, Ioannis; van den Brink, Jeroen
    Iridium oxides with a honeycomb lattice have been identified as platforms for the much anticipated Kitaev topological spin liquid: the spin-orbit entangled states of Ir4+ in principle generate precisely the required type of anisotropic exchange. However, other magnetic couplings can drive the system away from the spin-liquid phase. With this in mind, here we disentangle the different magnetic interactions in Li2IrO3, a honeycomb iridate with two crystallographically inequivalent sets of adjacent Ir sites. Our ab initio many-body calculations show that, while both Heisenberg and Kitaev nearest-neighbour couplings are present, on one set of Ir–Ir bonds the former dominates, resulting in the formation of spin-triplet dimers. The triplet dimers frame a strongly frustrated triangular lattice and by exact cluster diagonalization we show that they remain protected in a wide region of the phase diagram.
  • Item
    Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li2 CuO2
    (London : Nature Publishing Group, 2016) Johnston, Steve; Monney, Claude; Bisogni, Valentina; Zhou, Ke-Jin; Kraus, Roberto; Behr, Günter; Strocov, Vladimir N.; Málek, Jiři; Drechsler, Stefan-Ludwig; Geck, Jochen; Schmitt, Thorsten; van den Brink, Jeroen
    Strongly correlated insulators are broadly divided into two classes: Mott–Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li2CuO2.
  • Item
    Spin Nernst effect in a p-band semimetal InBi
    (Bristol : IOP Publishing, 2020) Zhang, Yang; Xu, Qiunan; Koepernik, Klaus; Fu, Chenguang; Gooth, Johannes; van den Brink, Jeroen; Felser, Claudia; Sun, Yan
    Since spin currents can be generated, detected, and manipulated via the spin Hall effect (SHE), the design of strong SHE materials has become a focus in the field of spintronics. Because of the recent experimental progress also the spin Nernst effect (SNE), the thermoelectrical counterpart of the SHE, has attracted much interest. Empirically strong SHEs and SNEs are associated with d-band compounds, such as transition metals and their alloys—the largest spin Hall conductivity (SHC) in a p-band material is $\sim 450\left(\hslash /e\right){\left({\Omega}\enspace \mathrm{c}\mathrm{m}\right)}^{-1}$ for a Bi–Sb alloy, which is only about a fifth of platinum. This raises the question whether either the SHE and SNE are naturally suppressed in p-bands compounds, or favourable p-band systems were just not identified yet. Here we consider the p-band semimetal InBi, and predict it has a record SHC ${\sigma }_{xy}^{z}\approx 1100\enspace \left(\hslash /e\right){\left({\Omega}\enspace \mathrm{c}\mathrm{m}\right)}^{-1}$ which is due to the presence of nodal lines in its band structure. Also the spin-Nernst conductivity ${\alpha }_{zx}^{y}\approx 1.2\enspace \left(\hslash /e\right)\left(A/m\cdot K\right)$ is very large, but our analysis shows its origin is different as the maximum appears in a different tensor element compared to that in SHC. This insight gained on InBi provides guiding principles to obtain a strong SHE and SNE in p-band materials and establishes a more comprehensive understanding of the relationship between the SHE and SNE.
  • Item
    Covalency and vibronic couplings make a nonmagnetic j=3/2 ion magnetic
    (London : Nature Publishing Group, 2016) Xu, Lei; Bogdanov, Nikolay A.; Princep, Andrew; Fulde, Peter; van den Brink, Jeroen; Hozoi, Liviu
    For 4d1 and 5d1 spin–orbit-coupled electron configurations, the notion of nonmagnetic j=3/2 quartet ground state discussed in classical textbooks is at odds with the observed variety of magnetic properties. Here we throw fresh light on the electronic structure of 4d1 and 5d1 ions in molybdenum- and osmium-based double-perovskite systems and reveal different kinds of on-site many-body physics in the two families of compounds: although the sizable magnetic moments and g-factors measured experimentally are due to both metal d–ligand p hybridisation and dynamic Jahn–Teller interactions for 4d electrons, it is essentially d−p covalency for the 5d1 configuration. These results highlight the subtle interplay of spin–orbit interactions, covalency and electron–lattice couplings as the major factor in deciding the nature of the magnetic ground states of 4d and 5d quantum materials. Cation charge imbalance in the double-perovskite structure is further shown to allow a fine tuning of the gap between the t2g and eg levels, an effect of much potential in the context of orbital engineering in oxide electronics.
  • Item
    Creating Weyl nodes and controlling their energy by magnetization rotation
    (College Park, ML : American Physical Society, 2020) Ghimire, Madhav Prasad; Facio, Jorge I.; You, Jhih-Shih; Ye, Linda; Checkelsky, Joseph G.; Fang, Shiang; Kaxiras, Efthimios; Richter, Manuel; van den Brink, Jeroen
    As they do not rely on the presence of any crystal symmetry, Weyl nodes are robust topological features of an electronic structure that can occur at any momentum and energy. Acting as sinks and sources of Berry curvature, Weyl nodes have been predicted to strongly affect the transverse electronic response, like in the anomalous Hall or Nernst effects. However, to observe large anomalous effects the Weyl nodes need to be close to or at the Fermi level, which implies the band structure must be tuned by an external parameter, e.g., chemical doping. Here we show that in a ferromagnetic metal tuning of the Weyl node energy and momentum can be achieved by rotation of the magnetization. First, taking as example the elementary magnet hcp-Co, we use electronic structure calculations based on density-functional theory to show that by canting the magnetization away from the easy axis, Weyl nodes can be driven exactly to the Fermi surface. Second, we show that the same phenomenology applies to the kagome ferromagnet Co3Sn2S2, in which we additionally show how the dynamics in energy and momentum of the Weyl nodes affects the calculated anomalous Hall and Nernst conductivities. Our results highlight how the intrinsic magnetic anisotropy can be used to engineer Weyl physics.
  • Item
    The vicinity of hyper-honeycomb β-Li2IrO3 to a three-dimensional Kitaev spin liquid state
    (London : Nature Publishing Group, 2016) Katukuri, Vamshi M.; Yadav, Ravi; Hozoi, Liviu; Nishimoto, Satoshi; van den Brink, Jeroen
    Due to the combination of a substantial spin-orbit coupling and correlation effects, iridium oxides hold a prominent place in the search for novel quantum states of matter, including, e.g., Kitaev spin liquids and topological Weyl states. We establish the promise of the very recently synthesized hyper-honeycomb iridate β-Li2IrO3 in this regard. A detailed theoretical analysis reveals the presence of large ferromagnetic first-neighbor Kitaev interactions, while a second-neighbor antiferromagnetic Heisenberg exchange drives the ground state from ferro to zigzag order via a three-dimensional Kitaev spin liquid and an incommensurate phase. Experiment puts the system in the latter regime but the Kitaev spin liquid is very close and reachable by a slight modification of the ratio between the second- and first-neighbor couplings, for instance via strain.
  • Item
    Long-range magnetic order in the ~S=1/2 triangular lattice antiferromagnet KCeS2
    (Amsterdam : SciPost Foundation, 2020) Bastien, Gaël; Rubrecht, Bastian; Haeussler, Ellen; Schlender, Philipp; Zangeneh, Ziba; Avdoshenko, Stanislav; Sarkar, Rajib; Alfonsov, Alexey; Luther, Sven; Onykiienko, Yevhen A.; Walker, Helen C.; Kühne, Hannes; Grinenko, Vadim; Guguchia, Zurab; Kataev, Vladislav; Klauss, Hans-Henning; Hozoi, Liviu; van den Brink, Jeroen; Inosov, Dmytro S.; Büchner, Bernd; Wolter, Anja U.B.; Doert, Thomas
    Recently, several putative quantum spin liquid (QSL) states were discovered in ~S=1/2 rare-earth based triangular-lattice antiferromagnets (TLAF) with the delafossite structure. A way to clarify the origin of the QSL state in these systems is to identify ways to tune them from the putative QSL state towards long-range magnetic order. Here, we introduce the Ce-based TLAF KCeS2 and show via low-temperature specific heat and μSR investigations that it yields magnetic order below TN=0.38 K despite the same delafossite structure. We identify a well separated ~S=1/2 ground state for KCeS2 from inelastic neutron scattering and embedded-cluster quantum chemical calculations. Magnetization and electron spin resonance measurements on single crystals indicate a strong easy-plane g~factor anisotropy, in agreement with the ab initio calculations. Finally, our specific-heat studies reveal an in-plane anisotropy of the magnetic field-temperature phase diagram which may indicate anisotropic magnetic interactions in KCeS2.
  • Item
    Theoretical approach to resonant inelastic X-ray scattering in iron-based superconductors at the energy scale of the superconducting gap
    (London : Nature Publishing Group, 2016) Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen
    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing.
  • Item
    Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb
    (London : Nature Publishing Group, 2018) Agrapidis, Cliò Efthimia; van den Brink, Jeroen; Nishimoto, Satoshi
    We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points ϕ=π2 and φ=3π2 are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl3, a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory.