Search Results

Now showing 1 - 7 of 7
  • Item
    Symmetry‐Induced Selective Excitation of Topological States in Su–Schrieffer–Heeger Waveguide Arrays
    (Weinheim : Wiley-VCH, 2023) Tang, Min; Wang, Jiawei; Valligatla, Sreeramulu; Saggau, Christian N.; Dong, Haiyun; Saei Ghareh Naz, Ehsan; Klembt, Sebastian; Lee, Ching Hua; Thomale, Ronny; van den Brink, Jeroen; Fulga, Ion Cosma; Schmidt, Oliver G.; Ma, Libo
    The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Herein, the topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su–Schrieffer–Heeger mirror symmetric waveguides is reported. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bidirectional topological transitions between symmetric and antisymmetric TZMs can be achieved with proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks.
  • Item
    Machine learning for additive manufacturing: Predicting materials characteristics and their uncertainty
    (Amsterdam [u.a.] : Elsevier Science, 2023) Chernyavsky, Dmitry; Kononenko, Denys Y.; Han, Jun Hee; Kim, Hwi Jun; van den Brink, Jeroen; Kosiba, Konrad
    Additive manufacturing (AM) is known for versatile fabrication of complex parts, while also allowing the synthesis of materials with desired microstructures and resulting properties. These benefits come at a cost: process control to manufacture parts within given specifications is very challenging due to the relevance of a large number of processing parameters. Efficient predictive machine learning (ML) models trained on small datasets, can minimize this cost. They also allow to assess the quality of the dataset inclusive of uncertainty. This is important in order for additively manufactured parts to meet property specifications not only on average, but also within a given variance or uncertainty. Here, we demonstrate this strategy by developing a heteroscedastic Gaussian process (HGP) model, from a dataset based on laser powder bed fusion of a glass-forming alloy at varying processing parameters. Using amorphicity as the microstructural descriptor, we train the model on our Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%) alloy dataset. The HGP model not only accurately predicts the mean value of amorphicity, but also provides the respective uncertainty. The quantification of the aleatoric and epistemic uncertainty contributions allows to assess intrinsic inaccuracies of the dataset, as well as identify underlying physical phenomena. This HGP model approach enables to systematically improve ML-driven AM processes.
  • Item
    Two-Dimensional Discommensurations: An Extension to McMillan’s Ginzburg–Landau Theory
    (Basel : MDPI, 2023) Mertens, Lotte; van den Brink, Jeroen; Wezel, Jasper van
    Charge density waves (CDWs) profoundly affect the electronic properties of materials and have an intricate interplay with other collective states, like superconductivity and magnetism. The well-known macroscopic Ginzburg–Landau theory stands out as a theoretical method for describing CDW phenomenology without requiring a microscopic description. In particular, it has been instrumental in understanding the emergence of domain structures in several CDW compounds, as well as the influence of critical fluctuations and the evolution towards or across lock-in transitions. In this context, McMillan’s foundational work introduced discommensurations as the objects mediating the transition from commensurate to incommensurate CDWs, through an intermediate nearly commensurate phase characterised by an ordered array of phase slips. Here, we extended the simplified, effectively one-dimensional, setting of the original model to a fully two-dimensional analysis. We found exact and numerical solutions for several types of discommensuration patterns and provide a framework for consistently describing multi-component CDWs embedded in quasi-two-dimensional atomic lattices.
  • Item
    Disorder effects in the Kitaev-Heisenberg model
    (College Park, MD : APS, 2023) Singhania, Ayushi; van den Brink, Jeroen; Nishimoto, Satoshi
    We study the interplay of disorder and Heisenberg interactions in the Kitaev model on a honeycomb lattice. The effect of disorder on the transition between Kitaev spin liquid and magnetic ordered states as well as the stability of magnetic ordering is investigated. Using Lanczos exact diagonalization we discuss the consequences of two types of disorder: (i) random-coupling disorder and (ii) singular-coupling disorder. They exhibit qualitatively similar effects in the pure Kitaev-Heisenberg model without long-range interactions. The range of spin-liquid phases is reduced and the transition to magnetic ordered phases becomes more crossoverlike. Furthermore, the long-range zigzag and stripy orderings in the clean system are replaced by their three domains with different ordering direction. Especially in the crossover range the coexistence of magnetically ordered and Kitaev spin-liquid domains is possible. With increasing the disorder strength the area of domains becomes smaller and the system goes into a spin-glass state. However, the disorder effect is different in magnetically ordered phases caused by long-range interactions. The stability of such magnetic ordering is diminished by singular-coupling disorder and, accordingly, the range of the spin-liquid regime is extended. This mechanism may be relevant to materials like α−RuCl3 and H3LiIr2O6 where the zigzag ground state is stabilized by weak long-range interactions. We also find that the flux gap closes at a critical disorder strength and vortices appears in the flux arrangement. Interestingly, the vortices tend to form kinds of commensurate ordering.
  • Item
    Berry curvature associated to Fermi arcs in continuum and lattice Weyl systems
    (College Park, MD : APS, 2023) Wawrzik, Dennis; van den Brink, Jeroen
    Recently it has been discovered that in Weyl semimetals the surface state Berry curvature can diverge in certain regions of momentum. This occurs in a continuum description of tilted Weyl cones, which for a slab geometry results in the Berry curvature dipole associated to the surface Fermi arcs growing linearly with slab thickness. Here we investigate analytically incarnations of lattice Weyl semimetals and demonstrate this diverging surface Berry curvature by solving for their surface states and connect these to their continuum descriptions. We show how the shape of the Fermi arc and the Berry curvature hot-line is determined and confirm the 1/k2 divergence of the Berry curvature at the end of the Fermi arc as well as the finite-size effects for the Berry curvature and its dipole, using finite-slab calculations and surface Green's function methods. We further establish that apart from affecting the second-order, nonlinear Hall effect, the divergent Berry curvature has a strong impact on other transport phenomena as the Magnus-Hall effect and the nonlinear chiral anomaly.
  • Item
    Magnetoelectricity induced by rippling of magnetic nanomembranes and wires
    (College Park, MD : APS, 2023) Ortix, Carmine; van den Brink, Jeroen
    Magnetoelectric crystals have the interesting property that they allow electric fields to induce magnetic polarizations, and vice versa, magnetic fields to generate ferroelectric polarizations. Having such a magnetoelectric coupling usually requires complex types of magnetic textures, e.g., of spiraling type. Here, we establish a previously unknown approach to generate linear magnetoelectric coupling in ferromagnetic insulators with intrinsic Dzyaloshinskii-Moriya interaction (DMI). We show that the effect of nanoscale curved geometries combined with the intrinsic DMI of the magnetic shell lead to a reorganization of the magnetic texture that spontaneously breaks inversion symmetry and thereby induces macroscopic magnetoelectric multipoles. Specifically, we prove that structural deformation in the form of controlled ripples activates a magnetoelectric monopole in the recently synthesized two-dimensional magnets. We also demonstrate that in zigzag-shaped ferromagnetic wires in planar architectures, a magnetic toroidal moment triggers direct linear magnetoelectric coupling.
  • Item
    Engineering a pure Dirac regime in ZrTe5
    (Amsterdam : SciPost Foundation, 2023) Facio, Jorge I.; Nocerino, Elisabetta; Fulga, Ion Cosma; Wawrzynczak, Rafal; Brown, Joanna; Gu, Genda; Li, Qiang; Mansson, Martin; Sassa, Yasmine; Ivashko, Oleh; von Zimmermann, Martin; Mende, Felix; Gooth, Johannes; Galeski, Stanislaw; van den Brink, Jeroen; Meng, Tobias
    Real-world topological semimetals typically exhibit Dirac and Weyl nodes that coexist with trivial Fermi pockets. This tends to mask the physics of the relativistic quasiparticles. Using the example of ZrTe5, we show that strain provides a powerful tool for in-situ tuning of the band structure such that all trivial pockets are pushed far away from the Fermi energy, but only for a certain range of Van der Waals gaps. Our results naturally reconcile contradicting reports on the presence or absence of additional pockets in ZrTe5, and provide a clear map of where to find a pure three-dimensional Dirac semimetallic phase in the structural parameter space of the material.