Search Results

Now showing 1 - 6 of 6
  • Item
    Theoretical approach to resonant inelastic X-ray scattering in iron-based superconductors at the energy scale of the superconducting gap
    (London : Nature Publishing Group, 2016) Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen
    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing.
  • Item
    Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3
    (London : Nature Publishing Group, 2016) Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu
    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.
  • Item
    Coupled multiple-mode theory for s± pairing mechanism in iron based superconductors
    (London : Nature Publishing Group, 2016) Kiselev, M.N.; Efremov, D.V.; Drechsler, S.L.; van den Brink, Jeroen; Kikoin, K.
    We investigate the interplay between the magnetic and the superconducting degrees of freedom in unconventional multi-band superconductors such as iron pnictides. For this purpose a dynamical mode-mode coupling theory is developed based on the coupled Bethe-Salpeter equations. In order to investigate the region of the phase diagram not too far from the tetracritical point where the magnetic spin density wave, (SDW) and superconducting (SC) transition temperatures coincide, we also construct a Ginzburg-Landau functional including both SC and SDW fluctuations in a critical region above the transition temperatures. The fluctuation corrections tend to suppress the magnetic transition, but in the superconducting channel the intraband and interband contribution of the fluctuations nearly compensate each other.
  • Item
    Correlation between topological band character and chemical bonding in a Bi14Rh3I9-based family of insulators
    (London : Nature Publishing Group, 2016) Rasche, Bertold; Isaeva, Anna; Ruck, Michael; Koepernik, Klaus; Richter, Manuel; van den Brink, Jeroen
    Recently the presence of topologically protected edge-states in Bi14Rh3I9 was confirmed by scanning tunnelling microscopy consolidating this compound as a weak 3D topological insulator (TI). Here, we present a density-functional-theory-based study on a family of TIs derived from the Bi14Rh3I9 parent structure via substitution of Ru, Pd, Os, Ir and Pt for Rh. Comparative analysis of the band-structures throughout the entire series is done by means of a unified minimalistic tight-binding model that evinces strong similarity between the quantum-spin-Hall (QSH) layer in Bi14Rh3I9 and graphene in terms of -molecular orbitals. Topologically non-trivial energy gaps are found for the Ir-, Rh-, Pt- and Pd-based systems, whereas the Os- and Ru-systems remain trivial. Furthermore, the energy position of the metal -band centre is identified as the parameter which governs the evolution of the topological character of the band structure through the whole family of TIs. The -band position is shown to correlate with the chemical bonding within the QSH layers, thus revealing how the chemical nature of the constituents affects the topological band character.
  • Item
    Unconventional superconductivity and interaction induced Fermi surface reconstruction in the two-dimensional Edwards model
    (London : Nature Publishing Group, 2016) Cho, Dai-Ning; van den Brink, Jeroen; Fehske, Holger; Becker, Klaus W.; Sykora, Steffen
    We study the competition between unconventional superconducting pairing and charge density wave (CDW) formation for the two-dimensional Edwards Hamiltonian at half filling, a very general two-dimensional transport model in which fermionic charge carriers couple to a correlated background medium. Using the projective renormalization method we find that a strong renormalization of the original fermionic band causes a new hole-like Fermi surface to emerge near the center of the Brillouin zone, before it eventually gives rise to the formation of a charge density wave. On the new, disconnected parts of the Fermi surface superconductivity is induced with a sign-changing order parameter. We discuss these findings in the light of recent experiments on iron-based oxypnictide superconductors.
  • Item
    The vicinity of hyper-honeycomb β-Li2IrO3 to a three-dimensional Kitaev spin liquid state
    (London : Nature Publishing Group, 2016) Katukuri, Vamshi M.; Yadav, Ravi; Hozoi, Liviu; Nishimoto, Satoshi; van den Brink, Jeroen
    Due to the combination of a substantial spin-orbit coupling and correlation effects, iridium oxides hold a prominent place in the search for novel quantum states of matter, including, e.g., Kitaev spin liquids and topological Weyl states. We establish the promise of the very recently synthesized hyper-honeycomb iridate β-Li2IrO3 in this regard. A detailed theoretical analysis reveals the presence of large ferromagnetic first-neighbor Kitaev interactions, while a second-neighbor antiferromagnetic Heisenberg exchange drives the ground state from ferro to zigzag order via a three-dimensional Kitaev spin liquid and an incommensurate phase. Experiment puts the system in the latter regime but the Kitaev spin liquid is very close and reachable by a slight modification of the ratio between the second- and first-neighbor couplings, for instance via strain.