Search Results

Now showing 1 - 3 of 3
  • Item
    Magnetic warping in topological insulators
    (College Park, MD : APS, 2022) Naselli, Gabriele; Moghaddam, Ali G.; Di Napoli, Solange; Vildosola, Verónica; Fulga, Ion Cosma; van den Brink, Jeroen; Facio, Jorge I.
    We analyze the electronic structure of topological surface states in the family of magnetic topological insulators MnBi2nTe3n+1. We show that, at natural-cleavage surfaces, the Dirac cone warping changes its symmetry from hexagonal to trigonal at the magnetic ordering temperature. In particular, an energy splitting develops between the surface states of the same band index but opposite surface momenta upon formation of the long-range magnetic order. As a consequence, measurements of such energy splittings constitute a simple protocol to detect the magnetic ordering via the surface electronic structure, alternative to the detection of the surface magnetic gap. Interestingly, while the latter signals a nonzero surface magnetization, the trigonal warping predicted here is, in addition, sensitive to the direction of the surface magnetic flux. Our results may be particularly useful when the Dirac point is buried in the projection of the bulk states, caused by certain terminations of the crystal or in hole-doped systems, since in both situations the surface magnetic gap itself is not accessible in photoemission experiments.
  • Item
    Different types of spin currents in the comprehensive materials database of nonmagnetic spin Hall effect
    (London : Nature Publ. Group, 2021) Zhang, Yang; Xu, Qiunan; Koepernik, Klaus; Rezaev, Roman; Janson, Oleg; Železný, Jakub; Jungwirth, Tomáš; Felser, Claudia; van den Brink, Jeroen; Sun, Yan
    Spin Hall effect (SHE) has its special position in spintronics. To gain new insight into SHE and to identify materials with substantial spin Hall conductivity (SHC), we performed high-precision high-throughput ab initio calculations of the intrinsic SHC for over 20,000 nonmagnetic crystals. The calculations revealed a strong relationship between the magnitude of the SHC and the crystalline symmetry, where a large SHC is typically associated with mirror symmetry-protected nodal line band structures. This database includes 11 materials with an SHC comparable to or even larger than that of Pt. Materials with different types of spin currents were additionally identified. Furthermore, we found that different types of spin current can be obtained by rotating applied electrical fields. This improves our understanding and is expected to facilitate the design of new types of spin-orbitronic devices.
  • Item
    Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3
    (London : Nature Publishing Group, 2016) Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu
    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.