Search Results

Now showing 1 - 2 of 2
  • Item
    Unraveling the Orbital Physics in a Canonical Orbital System KCuF3
    (College Park, Md. : APS, 2021) Li, Jiemin; Xu, Lei; Garcia-Fernandez, Mirian; Nag, Abhishek; Robarts, H.C.; Walters, A.C.; Liu, X.; Zhou, Jianshi; Wohlfeld, Krzysztof; van den Brink, Jeroen; Ding, Hong; Zhou, Ke-Jin
    We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF3 using the Cu L3-edge resonant inelastic x-ray scattering. We show that the nondispersive high-energy peaks result from the Cu2+  dd orbital excitations. These high-energy modes display good agreement with the ab initio quantum chemistry calculation, indicating that the dd excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Müller ansatz calculations. The localized dd excitations and the observation of the strongly dispersive magnetic excitations suggest that the orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong local Jahn-Teller effect in KCuF3, which predominantly drives orbital ordering.
  • Item
    Evidence for a percolative Mott insulator-metal transition in doped Sr2IrO4
    (College Park, MD : APS, 2021) Sun, Zhixiang; Guevara, Jose M.; Sykora, Steffen; Pärschke, Ekaterina M.; Manna, Kaustuv; Maljuk, Andrey; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd; Hess, Christian
    Despite many efforts to rationalize the strongly correlated electronic ground states in doped Mott insulators, the nature of the doping-induced insulator-to-metal transition is still a subject under intensive investigation. Here, we probe the nanoscale electronic structure of the Mott insulator Sr2IrO4−δ with low-temperature scanning tunneling microscopy and find an enhanced local density of states (LDOS) inside the Mott gap at the location of individual defects which we interpret as defects at apical oxygen sites. A chiral behavior in the topography for those defects has been observed. We also visualize the local enhanced conductance arising from the overlapping of defect states which induces finite LDOS inside of the Mott gap. By combining these findings with the typical spatial extension of isolated defects of about 2 nm, our results indicate that the insulator-to-metal transition in Sr2IrO4−δ could be percolative in nature.