Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Risk assessment of a cold argon plasma jet in respect to its mutagenicity

2016, Wende, K., Bekeschus, S., Schmidt, A., Jatsch, L., Hasse, S., Weltmann, K.D., Masur, K., von Woedtke, T.

Cold atmospheric pressure plasmas represent a favorable option for the treatment of heat sensitive materials and human or animal tissue. Beneficial effects have been documented in a variety of medical conditions, e.g., in the treatment of chronic wounds. It is assumed that the main mechanism of the plasma’s efficacy is mediated by a stimulating dissipation of energy via radiation and/or chemical energy. Although no evidence on undesired side effects of a plasma treatment has yet been presented, skepticism toward the safety of the exposure to plasma is present. However, only little data regarding the mutagenic potential of this new treatment option is available. Accordingly, we investigated the mutagenic potential of an argon plasma jet (kinpen) using different testing systems in accordance with ISO norms and multiple cell lines: a HPRT1 mutation assay, a micronucleus formation assay, and a colony formation assay. Moderate plasma treatment up to 180 s did not increase genotoxicity in any assay or cell type investigated. We conclude that treatment with the argon plasma jet kinpen did not display a mutagenic potential under the test conditions applied and may from this perspective be regarded as safe for the use in biomedical applications.

Loading...
Thumbnail Image
Item

Radiation Driven Chemistry in Biomolecules—is (V)UV Involved in the Bioactivity of Argon Jet Plasmas?

2021, Bruno, G., Wenske, S., Mahdikia, H., Gerling, T., von Woedtke, T., Wende, K.

Cold physical plasmas, especially noble gas driven plasma jets, emit considerable amounts of ultraviolet radiation (UV). Given that a noble gas channel is present, even the energetic vacuum UV can reach the treated target. The relevance of UV radiation for antimicrobial effects is generally accepted. It remains to be clarified if this radiation is relevant for other biomedical application of plasmas, e.g., in wound care or cancer remediation. In this work, the role of (vacuum) ultraviolet radiation generated by the argon plasma jet kINPen for cysteine modifications was investigated in aqueous solutions and porcine skin. To differentiate the effects of photons of different wavelength and complete plasma discharge, a micro chamber equipped with a MgF2, Suprasil, or Borosilicate glass window was used. In liquid phase, plasma-derived VUV radiation was effective and led to the formation of cysteine oxidation products and molecule breakdown products, yielding sulfite, sulfate, and hydrogen sulfide. At the boundary layer, the impact of VUV photons led to water molecule photolysis and formation of hydroxyl radicals and hydrogen peroxide. In addition, photolytic cleavage of the weak carbon-sulfur bond initiated the formation of sulfur oxy ions. In the intact skin model, protein thiol modification was rare even if a VUV transparent MgF2 window was used. Presumably, the plasma-derived VUV radiation played a limited role since reactions at the boundary layer are less frequent and the dense biomolecules layers block it effectively, inhibiting significant penetration. This result further emphasizes the safety of physical plasmas in biomedical applications.

Loading...
Thumbnail Image
Item

Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

2015, Jablonowski, H., Bussiahn, R., Hammer, M.U., Weltmann, K.-D., von Woedtke, T., Reuter, S.

Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•−) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

Loading...
Thumbnail Image
Item

Foundations of plasmas for medical applications

2022, von Woedtke, T., Laroussi, M., Gherardi, M.

Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids like water or physiological saline by a CAP source is performed in order to study specific biological activities. A basic understanding of the interaction between plasma and liquids and bio-interfaces is essential to follow biological plasma effects. Charged species, metastable species, and other atomic and molecular reactive species first produced in the main plasma ignition are transported to the discharge afterglow to finally be exposed to the biological targets. Contact with these liquid-dominated bio-interfaces generates other secondary reactive oxygen and nitrogen species (ROS, RNS). Both ROS and RNS possess strong oxidative properties and can trigger redox-related signalling pathways in cells and tissue, leading to various impacts of therapeutic relevance. Dependent on the intensity of plasma exposure, redox balance in cells can be influenced in a way that oxidative eustress leads to stimulation of cellular processes or oxidative distress leads to cell death. Currently, clinical CAP application is realized mainly in wound healing. The use of plasma in cancer treatment (i.e. plasma oncology) is a currently emerging field of research. Future perspectives and challenges in plasma medicine are mainly directed towards the control and optimization of CAP devices, to broaden and establish its medical applications, and to open up new plasma-based therapies in medicine.

Loading...
Thumbnail Image
Item

Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms

2012, Fricke, K., Koban, I., Tresp, H., Jablonowski, L., Schröder, K., Kramer, A., Weltmann, K.-D., von Woedtke, T., Kocher, T.

Introduction: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. Method: In this study a Candida albicans biofilm, formed on polystyrene (PS) wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture). The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. Results: The Candida albicans biofilm, with a thickness of 10 to 20 μm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy.

Loading...
Thumbnail Image
Item

Repeated exposure of the oral mucosa over 12 months with cold plasma is not carcinogenic in mice

2021, Evert, K., Kocher, T., Schindler, A., Müller, M., Müller, K., Pink, C., Holtfreter, B., Schmidt, A., Dombrowski, F., Schubert, A., von Woedtke, T., Rupf, S., Calvisi, D. F., Bekeschus, S., Jablonowski, L.

Peri-implantitis may result in the loss of dental implants. Cold atmospheric pressure plasma (CAP) was suggested to promote re-osseointegration, decrease antimicrobial burden, and support wound healing. However, the long-term risk assessment of CAP treatment in the oral cavity has not been addressed. Treatment with two different CAP devices was compared against UV radiation, carcinogen administration, and untreated conditions over 12 months. Histological analysis of 406 animals revealed that repeated CAP exposure did not foster non-invasive lesions or squamous cell carcinoma (SCCs). Carcinogen administration promoted non-invasive lesions and SCCs. Molecular analysis by a qPCR screening of 144 transcripts revealed distinct inflammatory profiles associated with each treatment regimen. Interestingly, CAP treatment of carcinogen-challenged mucosa did not promote but instead left unchanged or reduced the proportion of non-invasive lesions and SCC formation. In conclusion, repeated CAP exposure of murine oral mucosa was well tolerated, and carcinogenic effects did not occur, motivating CAP applications in patients for dental and implant treatments in the future.