Search Results

Now showing 1 - 2 of 2
  • Item
    Effects of cold atmospheric pressure plasma and disinfecting agents on Candida albicans in root canals of extracted human teeth
    (Weinheim : Wiley-VCH-Verl., 2020) Kerlikowski, Anne; Matthes, Rutger; Pink, Christiane; Steffen, Heike; Schlüter, Rabea; Holtfreter, Birte; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Kocher, Thomas; Jablonowski, Lukasz
    Reinfection in endodontically treated teeth is linked to the complexity of the root canal system, which is problematic to reach with conventional disinfection methods. As plasma is expected to have the ability to sanitize narrow areas, the aim of this study was to analyze the effect of cold atmospheric pressure plasma (CAP) on Candida albicans in root canals of extracted human teeth. CAP was applied as mono treatment and in combination with standard endodontic disinfectants (sodium hypochlorite, chlorhexidine and octenidine). Disinfection efficiency was evaluated as reduction of the logarithm of colony forming units per milliliter (log10 CFU/mL) supported by scanning electron microscopy as imaging technique. Plasma alone showed the highest reduction of log10 CFU, suggesting the best disinfection properties of all tested agents. © 2020 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH.
  • Item
    Gas Plasma Technology-An Asset to Healthcare during Viral Pandemics Such as the COVID-19 Crisis?
    (New York, NY : IEEE, 2020) Bekeschus, Sander; Kramer, Axel; Suffredini, Elisabetta; von Woedtke, Thomas; Colombo, Vittorio
    The COVID-19 crisis profoundly disguised the vulnerability of human societies and healthcare systems in the situation of a pandemic. In many instances, it became evident that the quick and safe reduction of viral load and spread is the foremost principle in the successful management of such a pandemic. However, it became also clear that many of the established routines in healthcare are not always sufficient to cope with the increased demand for decontamination procedures of items, healthcare products, and even infected tissues. For the last 25 years, the use of gas plasma technology has sparked a tremendous amount of literature on its decontaminating properties, especially for heat-labile targets, such as polymers and tissues, where chemical decontamination often is not appropriate. However, while the majority of earlier work focused on bacteria, only relatively few reports are available on the inactivation of viruses. We here aim to provide a perspective for the general audience of the chances and opportunities of gas plasma technology for supporting healthcare during viral pandemics such as the COVID-19 crisis. This includes possible real-world plasma applications, appropriate laboratory viral test systems, and critical points on the technical and safety requirements of gas plasmas for virus inactivation.