Search Results

Now showing 1 - 2 of 2
  • Item
    Dynamics of graphene growth on a metal surface: A time-dependent photoemission study
    (Milton Park : Taylor & Francis, 2009) Grüneis, Alexander; Kummer, Kurt; Vyalikh, Denis V.
    Applying time-dependent photoemission we unravel the graphene growth process on a metallic surface by chemical vapor deposition (CVD). Graphene CVD growth is in stark contrast to the standard growth process of two-dimensional films because it is self-limiting and stops as soon as a monolayer of graphene has been synthesized. Most importantly, a novel phase of metastable graphene was discovered that is characterized by permanent and simultaneous construction and deconstruction. The high quality and large area graphene flakes are characterized by angle-resolved photoemission, proving that they are indeed monolayer and cover the whole 1×1 cm Ni(111) substrate. These findings are of high relevance to the intensive search for reliable synthesis methods for large graphene flakes of controlled layer number.
  • Item
    Electric-field control of surface magnetic anisotropy: A density functional approach
    (Milton Park : Taylor & Francis, 2009) Zhang, Hongbin; Richter, Manuel; Koepernik, Klaus; Opahle, Ingo; Tasnádi, Ferenc; Eschrig, Helmut
    In a recent experiment, Weisheit et al (2007 Science 315 349) demonstrated that the coercivity of thin L10 FePt and FePd films can be modified by the external electric field in an electrochemical environment. Here, this observation is confirmed by density functional calculations for the intrinsic magnetic anisotropy. The origin of the effect is clarified by means of a general and simple method to simulate charged metal surfaces. It is predicted that the coercivity of thin CoPt films is much more susceptible to electric field than that of FePt films.