Search Results

Now showing 1 - 10 of 75
  • Item
    Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor
    (Cambridge : Royal Society of Chemistry, 2015) Guha, S.; Warsinke, A.; Tientcheu, Ch.M.; Schmalz, K.; Meliani, C.; Wenger, Ch.
    In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88–880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm2 reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process.
  • Item
    High spatial and temporal resolution cell manipulation techniques in microchannels
    (Cambridge : Royal Society of Chemistry, 2016) Novo, Pedro; Dell’Aica, Margherita; Janasek, Dirk; Zahedi, René P.
    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.
  • Item
    Analysis of fatty acids and triacylglycerides by Pd nanoparticle-assisted laser desorption/ionization mass spectrometry
    (Cambridge : Royal Society of Chemistry, 2015) Silina, Yuliya E.; Fink-Straube, Claudia; Hayen, Heiko; Volmer, Dietrich A.
    In this study, we propose a simple and rapid technique for characterization of free fatty acids and triacylglycerides (TAG) based on palladium nanoparticular (Pd-NP) surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS). The implemented Pd-NP material allowed detection of free fatty acids and TAGs exclusively as [M + K]+ ions in positive ion mode. Under negative ionization conditions, unusual trimetric structures were generated for free fatty acids, while TAGs underwent irreproducible degradation reactions. Importantly, the mass spectra obtained from Pd-NP targets in positive ion mode were very clean without interferences from matrix-derived ions in the low m/z range and readily enabled the detection of intact TAGs in vegetable oils without major fragmentation reactions as compared to conventional MALDI-MS, requiring only a minimal amount of sample preparation.
  • Item
    Fast IR laser mapping ellipsometry for the study of functional organic thin films
    (Cambridge : Royal Society of Chemistry, 2015) Furchner, Andreas; Sun, Guoguang; Ketelsen, Helge; Rappich, Jörg; Hinrichs, Karsten
    Fast infrared mapping with sub-millimeter lateral resolution as well as time-resolved infrared studies of kinetic processes of functional organic thin films require a new generation of infrared ellipsometers. We present a novel laboratory-based infrared (IR) laser mapping ellipsometer, in which a laser is coupled to a variable-angle rotating analyzer ellipsometer. Compared to conventional Fourier-transform infrared (FT-IR) ellipsometers, the IR laser ellipsometer provides ten- to hundredfold shorter measurement times down to 80 ms per measured spot, as well as about tenfold increased lateral resolution of 120 μm, thus enabling mapping of small sample areas with thin-film sensitivity. The ellipsometer, equipped with a HeNe laser emitting at about 2949 cm−1, was applied for the optical characterization of inhomogeneous poly(3-hexylthiophene) [P3HT] and poly(N-isopropylacrylamide) [PNIPAAm] organic thin films used for opto-electronics and bioapplications. With the constant development of tunable IR laser sources, laser-based infrared ellipsometry is a promising technique for fast in-depth mapping characterization of thin films and blends.
  • Item
    Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays
    (Cambridge : Royal Society of Chemistry, 2014) Alhmoud, Hashim Z.; Guinan, Taryn M.; Elnathan, Roey; Kobus, Hilton; Voelcker, Nicolas H.
    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is ideally suited for the high-throughput analysis of small molecules in bodily fluids (e.g. saliva, urine, and blood plasma). A key application for this technique is the testing of drug consumption in the context of workplace, roadside, athlete sports and anti-addictive drug compliance. Here, we show that vertically-aligned ordered silicon nanopillar (SiNP) arrays fabricated using nanosphere lithography followed by metal-assisted chemical etching (MACE) are suitable substrates for the SALDI-MS detection of methadone and small peptides. Porosity, length and diameter are fabrication parameters that we have explored here in order to optimize analytical performance. We demonstrate the quantitative analysis of methadone in MilliQ water down to 32 ng mL-1. Finally, the capability of SiNP arrays to facilitate the detection of methadone in clinical samples is also demonstrated.
  • Item
    Self-calibrating highly sensitive dynamic capacitance sensor: Towards rapid sensing and counting of particles in laminar flow systems
    (Cambridge : Royal Society of Chemistry, 2015) Guha, S.; Schmalz, K.; Wenger, Ch.; Herzel, F.
    In this report we propose a sensor architecture and a corresponding read-out technique on silicon for the detection of dynamic capacitance change. This approach can be applied to rapid particle counting and single particle sensing in a fluidic system. The sensing principle is based on capacitance variation of an interdigitated electrode (IDE) structure embedded in an oscillator circuit. The capacitance scaling of the IDE results in frequency modulation of the oscillator. A demodulator architecture is employed to provide a read-out of the frequency modulation caused by the capacitance change. A self-calibrating technique is employed at the read-out amplifier stage. The capacitance variation of the IDE due to particle flow causing frequency modulation and the corresponding demodulator read-out has been analytically modelled. Experimental verification of the established model and the functionality of the sensor chip were shown using a modulating capacitor independent of fluidic integration. The initial results show that the sensor is capable of detecting frequency changes of the order of 100 parts per million (PPM), which translates to a shift of 1.43 MHz at 14.3 GHz operating frequency. It is also shown that a capacitance change every 3 μs can be accurately detected.
  • Item
    An experimental study on the influence of trace impurities on ionization of atmospheric noble gas dielectric barrier discharges
    (Cambridge : Royal Society of Chemistry, 2016) Klute, F.D.; Schütz, A.; Michels, A.; Vadla, C.; Veza, D.; Horvatic, V.; Franzke, J.
    While the influence of trace impurities in noble gas discharges is well established in theoretical work, experimental approaches are difficult. Particularly the effects of trace concentrations of N2 on He discharges are complicated to investigate due to the fact that for He 5.0 the purity of He is only 99.999%. This corresponds to a residual concentration of 10 ppm, thereof 3 ppm of N2, in He. Matters are made difficult by the fact that He DBD plasmajets are normally operated under an ambient atmosphere, which has a high abundance of N2. This work tackles these problems from two sides. The first approach is to operate a DBD plasmajet under a quasi-controlled He atmosphere, therefore diminishing the effect of atmospheric N2 and making a defined contamination with N2 possible. The second approach is using Ar as the operating gas and introducing propane (C3H8) as a suitable substitute impurity like N2 in He. As will be shown both discharges in either He or Ar, with their respective impurity show the same qualitative behaviour.
  • Item
    Improving the zT value of thermoelectrics by nanostructuring: Tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids
    (Cambridge : Royal Society of Chemistry, 2016) Schaumann, Julian; Loor, Manuel; Ãœnal, Derya; Mudring, Anja; Heimann, Stefan; Hagemann, Ulrich; Schulz, Stephan; Maculewicz, Franziska; Schierning, Gabi
    A systematic study on the microwave-assisted thermolysis of the single source precursor (Et2Sb)2Te (1) in different asymmetric 1-alkyl-3-methylimidazolium- and symmetric 1,3-dialkylimidazolium-based ionic liquids (ILs) reveals the distinctive role of both the anion and the cation in tuning the morphology and microstructure of the resulting Sb2Te3 nanoparticles as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). A comparison of the electrical and thermal conductivities as well as the Seebeck coefficient of the Sb2Te3 nanoparticles obtained from different ILs reveals the strong influence of the specific IL, from which C4mimI was identified as the best solvent, on the thermoelectric properties of as-prepared nanosized Sb2Te3. This work provides design guidelines for ILs, which allow the synthesis of nanostructured thermoelectrics with improved performances.
  • Item
    Magnetic superexchange interactions: Trinuclear bis(oxamidato) versus bis(oxamato) type complexes
    (Cambridge : Royal Society of Chemistry, 2015) Abdulmalic, Mohammad A.; Aliabadi, Azar; Petr, Andreas; Krupskaya, Yulia; Kataev, Vladislav; Büchner, Bernd; Zaripov, Ruslan; Vavilova, Evgeniya; Voronkova, Violeta; Salikov, Kev; Hahn, Torsten; Kortus, Jens; Meva, Francois Eya’ane; Schaarschmidt, Dieter; Rüffer, Tobias
    The diethyl ester of o-phenylenebis(oxamic acid) (opbaH2Et2) was treated with an excess of RNH2 in MeOH to cause the exclusive formation of the respective o-phenylenebis(N(R)-oxamides) (opboH4R2, R = Me 1, Et 2, nPr 3) in good yields. Treatment of 1–3 with half an equivalent of [Cu2(AcO)4(H2O)2] or one equivalent of [Ni(AcO)2(H2O)4] followed by the addition of four equivalents of [nBu4N]OH resulted in the formation of mononuclear bis(oxamidato) type complexes [nBu4N]2[M(opboR2)] (M = Ni, R = Me 4, Et 5, nPr 6; M = Cu, R = Me 7, Et 8, nPr 9). By addition of two equivalents of [Cu(pmdta)(NO3)2] to MeCN solutions of 7–9, novel trinuclear complexes [Cu3(opboR2)(L)2](NO3)2 (L = pmdta, R = Me 10, Et 11, nPr 12) could be obtained. Compounds 4–12 have been characterized by elemental analysis and NMR/IR spectroscopy. Furthermore, the solid state structures of 4–10 and 12 have been determined by single-crystal X-ray diffraction studies. By controlled cocrystallization, diamagnetically diluted 8 and 9 (1%) in the host lattice of 5 and 6 (99%) (8@5 and 9@6), respectively, in the form of single crystals have been made available, allowing single crystal ESR studies to extract all components of the g-factor and the tensors of onsite CuA and transferred NA hyperfine (HF) interaction. From these studies, the spin density distribution of the [Cu(opboEt2)]2− and [Cu(opbonPr2)]2− complex fragments of 8 and 9, respectively, could be determined. Additionally, as a single crystal ENDOR measurement of 8@5 revealed the individual HF tensors of the N donor atoms to be unequal, individual estimates of the spin densities on each N donor atom were made. The magnetic properties of 10–12 were studied by susceptibility measurements versus temperature to give J values varying from −96 cm−1 (10) over −104 cm−1 (11) to −132 cm−1 (12). These three trinuclear CuII-containing bis(oxamidato) type complexes exhibit J values which are comparable to and slightly larger in magnitude than those of related bis(oxamato) type complexes. In a summarizing discussion involving experimentally obtained ESR results (spin density distribution) of 8 and 9, the geometries of the terminal [Cu(pmdta)]2+ fragments of 12 determined by crystallographic studies, together with accompanying quantum chemical calculations, an approach is derived to explain these phenomena and to conclude if the spin density distribution of mononuclear bis(oxamato)/bis(oxamidato) type complexes could be a measure of the J couplings of corresponding trinuclear complexes.
  • Item
    A novel precursor system and its application to produce tin doped indium oxide
    (Cambridge : Royal Society of Chemistry, 2011) Veith, Michael; Bubel, Carsten; Zimmer, Michael
    A new type of precursor has been developed by molecular design and synthesised to produce tin doped indium oxide (ITO). The precursor consists of a newly developed bimetallic indium tin alkoxide, Me2In(OtBu)3Sn (Me = CH3, OtBu = OC(CH3)3), which is in equilibrium with an excess of Me2In(OtBu). This quasi single-source precursor is applied in a sol–gel process to produce powders and coatings of ITO using a one-step heat treatment process under an inert atmosphere. The main advantage of this system is the simple heat treatment that leads to the disproportionation of the bivalent Sn(II) precursor into Sn(IV) and metallic tin, resulting in an overall reduced state of the metal in the final tin doped indium oxide (ITO) material, hence avoiding the usually necessary reduction step. Solid state 119Sn-NMR measurements of powder samples confirm the appearance of Sn(II) in an amorphous gel state and of metallic tin after annealing under nitrogen. The corresponding preparation of ITO coatings by spin coating on glass leads to transparent conductive layers with a high transmittance of visible light and a low electrical resistivity without the necessity of a reduction step.