Search Results

Now showing 1 - 10 of 138
  • Item
    Mechanisms of bonding effected by nanoparticles in zirconia coatings applied by spraying of suspensions
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2008) Adam, Jens; Aslan, Mesut; Drumm, Robert; Veith, Michael
    Zirconia coatings consisting of a mixture of coarse and fine grained zirconia powders prepared by spraying of suspensions and subsequent thermal treatment at limited temperatures (up to 500°C) are poor in adherence and in intrinsic mechanical strength. We have shown elsewhere that mechanical properties of these coatings can be improved clearly by adding a small amount of nanoscaled zirconia. Here, the structural and the chemical development of this coating material and of the nanoparticles is examined to gain information about the underlying bonding mechanisms. The applied temperature is relatively low in comparison to the usual onset temperature of accelerated sintering. Nevertheless, the results show that diffusion controlled material transport mechanisms play their role in bonding. The condensation of surface OH groups may participate in bonding, too. These first results confirm the potential of nanoparticles to act as inorganic binder. Additional research effort to clarify the underlying mechanisms in detail is of interest. For the practical side, it can be concluded that the resulting effect of mechanical consolidation of ceramic structures at relatively low temperatures enables new ceramic applications, for example a new type of ceramic coatings on metallic substrates.
  • Item
    Fabrication of metal nanoparticle arrays by controlled decomposition of polymer particles
    (Bristol : IOP Publishing, 2013) Brodoceanu, Daniel; Fang, Cheng; Voelcker, Nicolas Hans; Bauer, Christina T.; Wonn, Anne; Kroner, Elmar; Arzt, Eduard; Kraus, Tobias
    We report a novel fabrication method for ordered arrays of metal nanoparticles that exploits the uniform arrangement of polymer beads deposited as close-packed monolayers. In contrast to colloidal lithography that applies particles as masks, we used thermal decomposition of the metal-covered particles to precisely define metal structures. Large arrays of noble metal (Au, Ag, Pt) nanoparticles were produced in a three-step process on silicon, fused silica and sapphire substrates, demonstrating the generality of this approach. Polystyrene spheres with diameters ranging between 110 nm and 1 µm were convectively assembled into crystalline monolayers, coated with metal and annealed in a resistive furnace or using an ethanol flame. The thermal decomposition of the polymer microspheres converted the metal layer into particles arranged in hexagonal arrays that preserved the order of the original monolayer. Both the particle size and the interparticle distance were adjusted via the thickness of the metal coating and the sphere diameter, respectively.
  • Item
    Light-Emitting Devices – Luminescence from Low-Dimensional Nanostructures
    (London : IntechOpen, 2014) Mousavi, S.H.; Jafari Mohammdi, S.A.; Haratizadeh, H.; Oliveira, Peter W. de
    [no abstract available]
  • Item
    Adhesion of a rigid punch to a confined elastic layer revisited
    (Milton Park : Taylor & Francis, 2017) Hensel, René; McMeeking, Robert M.; Kossa, Attila
    The adhesion of a punch to a linear elastic, confined layer is investigated. Numerical analysis is performed to determine the equivalent elastic modulus in terms of layer confinement. The size of the layer relative to the punch radius and its Poisson’s ratio are found to affect the layer stiffness. The results reveal that the equivalent modulus of a highly confined layer depends on its Poisson’s ratio, whereas, in contrast, an unconfined layer is only sensitive to the extent of the elastic film. The solutions of the equivalent modulus obtained from the simulations are fitted by an analytical function that, subsequently, is utilized to deduce the energy release rate for detachment of the punch via linear elastic fracture mechanics. The energy release rate strongly varies with layer confinement. Regimes for stable and unstable crack growth can be identified that, in turn, are correlated to interfacial stress distributions to distinguish between different detachment mechanisms.
  • Item
    Vanadia–titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2016) Fleischamann, Simon; Tolosa, Aura; Zieger, Marco; Krüner, Benjamin; Peter, Nicolas J.; Grobelsek, Ingrid; Quade, Antje; Kruth, Angela; Presser, Volker
    Atomic layer deposition has proven to be a particularly attractive approach for ecorating mesoporous carbon substrates with redox active metal oxides for lectrochemical energy storage. This study, for the first time, capitalizes on the cyclic character of atomic layer deposition to obtain highly conformal and atomically controlled decoration of carbon onions with alternating stacks of vanadia and titania. The addition of 25 mass% TiO2 leads to expansion of the VO2 unit cell, thus greatly enhancing lithium intercalation capacity and kinetics. Electrochemical characterization revealed an ultrahigh discharge capacity of up to 382 mA h g^-1 of the composite electrode (554 mA h g^-1 per metal oxide) with an impressive capacity retention of 82 mA h g^-1 (120 mA h g^-1 per metal oxide) at a high discharge rate of 20 A g^-1 or 52C. Stability benchmarking showed stability over 3000 cycles when discharging to a reduced potential of ^-1.8 V vs. carbon. These capacity values are among the highest reported for any metal oxide system, while in addition, upercapacitor-like power performance and longevity are achieved. At a device level, high specific energy and power of up to 110 W h kg^-1 and 6 kW kg^-1, respectively, were achieved when employing the hybrid material as anode versus activated carbon cathode.
  • Item
    Work on non photocatalytically active titania particles
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2009) Müller, Thomas S.; Faller-Schneider, Christine; Moh, Karsten; Shanmugasundaram, Sakthivel; Oliveira, Peter W. de; Veith, Michael
    Titanium dioxide has photocatalytic properties, i.e. under UV irradiation it develops an oxidative potential. In photocatalysis this is very desirable, but not when nano particulate titania is embedded into organic polymer matrices in order to increase the refractive index. UV irradiation would in this case destroy the material in the long run. For deactivation in general the titania is coated by e.g. silica or alumina which leads to other undesired effects like growth of the particle size and enhanced light scattering. The current work focuses on the application of techniques for doping during synthesis of crystallization of nano particulate TiO2. The photocatalysis activity was determined by degradation experiments of 4-chlorophenol using dip coated glass plates under artificial sunlight, where decreases of the photocatalytic effect of up to 90 % were found.
  • Item
    Effizienzsteigerung der Meeresforschungstechnik (VEM), Teilprojekt 4: Katalysatoren für Unterwasseranwendungen : Schlussbericht ; Laufzeit: 01.03.2008 - 28.02.2011
    (Hannover : Technische Informationsbibliothek (TIB), 2011) Surkus, Annette-Enrica; Junge, Henrik
    [no abstract available]