Search Results

Now showing 1 - 4 of 4
  • Item
    Model studies of short-term variations induced in trace gases by particle precipitation in the mesosphere and lower thermosphere
    (Hoboken, NJ : Wiley, 2016) Fytterer, T.; Bender, S.; Berger, U.; Nieder, H.; Sinnhuber, M.; Wissing, J.M.
    The 3-D global chemistry and transport model (3dCTM) was used to investigate NO, OH, and O3 from January 2002 to May 2010 between 60 km and 133 km. Their daytime and nighttime mean zonal means (55°–75° geomagnetic latitude) were analyzed with respect to short-term variations associated with particle precipitation. The corresponding ionization rates were derived from the 3-D atmospheric ionization module Osnabrück (AIMOS), which is based on particle flux measurements. The trace gas variations with respect to their background were investigated by using a superposed epoch analysis. The 27 day signature associated with particle precipitation is found in NO, while it is only indicated in OH and O3 during winter. A varying solar spectrum associated with the 11 year solar cycle causes modifications of this signal up to 10%, while the main patterns are conserved. Published observations show a clear 27 day signal, qualitatively agreeing with the model results at altitudes >70 km except for O3 in Northern Hemisphere winter. Further differences occur with respect to the magnitude of the trace gas variations, primarily attributed to the different trace gas background and dynamical variations of the background atmosphere. Absolute OH variations are overestimated by the 3dCTM during winter, while the opposite is true for O3. These differences might originate from an unknown offset in AIMOS, incorrect chemical reaction rates, a different background of H2O and O3, and the model dynamics. However, their nonlinear relationship and their altitude of largest response are qualitatively captured in Southern Hemisphere winter.
  • Item
    Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere
    (Hoboken, NJ : Wiley, 2014) Plane, J.M.C.; Feng, W.; Dawkins, E.; Chipperfield, M.P.; Höffner, J.; Janches, D.; Marsh, D.R.
    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer.
  • Item
    A global atmospheric model of meteoric iron
    (Hoboken, NJ : Wiley, 2013) Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Höffner, Josef; Yi, Fan; Plane, John M.C.
    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.
  • Item
    Solar cycle response and long-term trends in the mesospheric metal layers
    (Hoboken, NJ : Wiley, 2016) Dawkins, E.C.M.; Plane, J.M.C.; Chipperfield, M.P.; Feng, W.; Marsh, D.R.; Höffner, J.; Janches, D.
    The meteoric metal layers (Na, Fe, and K)—which form as a result of the ablation of incoming meteors—act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere/lower thermosphere region. In this work, we examine whether these metal layers are sensitive indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955–2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer timescales (both the ~11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004–2013.