Search Results

Now showing 1 - 10 of 35
  • Item
    Gradients of Al/Al2O3 nanostructures for screening mesenchymal stem cell proliferation and differentiation
    (Wuhan : Scientific Research Publishing, 2013) Veith, Michael; Dufloux, Cécile; Ghaemi, Soraya Rasi; Cenk, Aktas; Voelcker, Nicolas H.
    By decomposing a molecular precursor we fabricated a novel surface based on an aluminium/aluminiumoxide composite incorporating nanotopography gradient to address high-throughput and fast analysis method for studying stem cell differentiation by nanostructures. Depending on the topography of the nanostructures, mesenchymal stem cells exhibit a diverse proliferation and differentiation behavior.
  • Item
    Multi-capillary column-ion mobility spectrometry (MCC-IMS) as a new method for the quantification of occupational exposure to sevoflurane in anaesthesia workplaces: an observational feasibility study
    (London : BioMed Central, 2015) Kunze, Nils; Weigel, Cathrin; Vautz, Wolfgang; Schwerdtfeger, Katrin; Jünger, Melanie; Quintel, Michael; Perl, Thorsten
    Background: Occupational exposure to sevoflurane has the potential to cause health damage in hospital personnel. Workplace contamination with the substance mostly is assessed by using photoacoustic infrared spectrometry with detection limits of 10 ppbv. Multi-capillary column-ion mobility spectrometry (MCC-IMS) could be an alternative technology for the quantification of sevoflurane in the room air and could be even more accurate because of potentially lower detection limits. The aim of this study was to test the hypothesis that MCC-IMS is able to detect and monitor very low concentrations of sevoflurane (<10 ppbv) and to evaluate the exposure of hospital personnel to sevoflurane during paediatric anaesthesia and in the post anaesthesia care unit (PACU). Methods: A MCC-IMS device was calibrated to several concentrations of sevoflurane and limits of detection (LOD) and quantification (LOQ) were calculated. Sevoflurane exposure of hospital personnel was measured at two anaesthesia workplaces and time-weighted average (TWA) values were calculated. Results: The LOD was 0.0068 ppbv and the LOQ was 0.0189 ppbv. During paediatric anaesthesia the mean sevoflurane concentration was 46.9 ppbv (8.0 - 314.7 ppbv) with TWA values between 5.8 and 45.7 ppbv. In the PACU the mean sevoflurane concentration was 27.9 ppbv (8.0 – 170.2 ppbv) and TWA values reached from 8.3 to 45.1 ppbv. Conclusions: MCC-IMS shows a significantly lower LOD and LOQ than comparable methods. It is a reliable technology for monitoring sevoflurane concentrations at anaesthesia workplaces and has a particular strength in quantifying low-level contaminations of sevoflurane. The exposure of the personnel working in these areas did not exceed recommended limits and therefore adverse health effects are unlikely.
  • Item
    Proteinase-activated receptor-2 agonist activates anti-influenza mechanisms and modulates IFNγ induced antiviral pathways in human neutrophils
    (London : Hindawi, 2013) Feld, Micha; Shpacovitch, Victoria; Ehrhardt, Christina; Fastrich, Michaela; Goerge, Tobias; Ludwig, Stephan; Steinhoff, Martin
    Proteinase-activated receptor-2 (PAR2) is expressed by human leukocytes and participates in the development of inflammatory diseases. Recent studies demonstrated an ability of PAR2 agonist to enhance IFNγ-induced antiviral responses of human leukocytes. However, the precise cellular antiviral defense mechanisms triggered in leukocytes after stimulation with IFNγ and/or PAR2 agonist remain elusive. Therefore, we aimed to identify neutrophil defense mechanisms involved in antiviral resistance. Here we demonstrated that PAR2 agonist enhanced IFNγ-related reduction of influenza A virus (IAV) replication in human neutrophils. PAR2-mediated decrease in IAV replication was associated with reduced NS-1 transcription. Moreover, PAR2-dependent neutrophil activation resulted in enhanced myeloperoxidase degranulation and extracellular myeloperoxidase disrupted IAV. The production of ROS was elevated in response to PAR2 activation. Interestingly, IFNγ did not influence both effects: PAR2 agonist-triggered myeloperoxidase (MPO) release and reactive oxygen species (ROS) production, which are known to limit IAV infections. In contrast, orthomyxovirus resistance gene A (MxA) protein expression was synergistically elevated through PAR2 agonist and IFNγ in neutrophils. Altogether, these findings emphasize two PAR2-controlled antiviral mechanisms that are independent of or modulated by IFNγ.
  • Item
    Using SRM-MS to quantify nuclear protein abundance differences between adipose tissue depots of insulin-resistant mice
    (Rockville : American Society for Biochemistry and Molecular Biology, 2015) Ota, Asuka; Kovary, Kyle M.; Wu, Olivia H.; Ahrends, Robert; Shen, Wen-Jun; Costa, Maria J.; Feldman, Brian J.; Kraemer, Fredric B.; Teruel, Mary N.
    Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.
  • Item
    Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts
    (Orchard Park : Impact Journals, 2014) Waldera-Lupa, Daniel M.; Kalfalah, Faiza; Florea, Ana-Maria; Sass, Steffen; Kruse, Fabian; Rieder, Vera; Tigges, Julia; Fritsche, Ellen; Krutmann, Jean; Busch, Hauke; Boerries, Melanie; Meyer, Helmut E.; Boege, Fritz; Theis, Fabian; Reifenberger, Guido; Stühle, Kai
    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging.
  • Item
    Proteome analyses of hepatocellular carcinoma
    (Sugar Land, TX : Xia & He Publishing, 2014) Megger, Dominik A.; Naboulsi, Naboulsi; Meyer, Helmut E.; Sitek, Barbara
    Proteomics has evolved into a powerful and widely used bioanalytical technique in the study of cancer, especially hepatocellular carcinoma (HCC). In this review, we provide an up to date overview of feasible proteome-analytical techniques for clinical questions. In addition, we present a broad summary of proteomic studies of HCC utilizing various technical approaches for the analysis of samples derived from diverse sources like HCC cell lines, animal models, human tissue and body fluids.
  • Item
    Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays
    (Cambridge : Royal Society of Chemistry, 2014) Alhmoud, Hashim Z.; Guinan, Taryn M.; Elnathan, Roey; Kobus, Hilton; Voelcker, Nicolas H.
    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is ideally suited for the high-throughput analysis of small molecules in bodily fluids (e.g. saliva, urine, and blood plasma). A key application for this technique is the testing of drug consumption in the context of workplace, roadside, athlete sports and anti-addictive drug compliance. Here, we show that vertically-aligned ordered silicon nanopillar (SiNP) arrays fabricated using nanosphere lithography followed by metal-assisted chemical etching (MACE) are suitable substrates for the SALDI-MS detection of methadone and small peptides. Porosity, length and diameter are fabrication parameters that we have explored here in order to optimize analytical performance. We demonstrate the quantitative analysis of methadone in MilliQ water down to 32 ng mL-1. Finally, the capability of SiNP arrays to facilitate the detection of methadone in clinical samples is also demonstrated.
  • Item
    Proteomic insights into non-small cell lung cancer: New ideas for cancer diagnosis and therapy from a functional viewpoint
    (Amsterdam : Elsevier, 2014) Linxweiler, Johannes; Kollipara, Laxmikanth; Zahedi, René P.; Lampel, Pavel; Zimmermann, Richard; Greiner, Markus
    We recently characterized SEC62 as an oncogene in non-small-cell lung cancer (NSCLC). Here we aimed to gain further insight into the molecular mechanisms of the cancer-related functions of this oncogene. We performed 2D-DIGE proteome analysis of tumor material from patients with NSCLC and of HEK293 cells stably overexpressing plasmid-encoded SEC62, combined with investigation of the Sec62 interactome. Furthermore, we analyzed the proteomic effects of siRNA-mediated depletion of the Sec62-interacting protein Sec63. We identified a comprehensive list of differentially regulated proteins, providing new insights into the molecular mechanisms of the cancer-related functions of Sec62 in cell migration, drug resistance, and Ca2+-homeostasis.
  • Item
    Identification of Eps15 as antigen recognized by the monoclonal antibodies aa2 and ab52 of the wuerzburg hybridoma library against Drosophila brain
    (San Francisco, CA : Public Library of Science, 2011) Halder, Partho; Chen, Yi-chun; Brauckhoff, Janine; Hofbauer, Alois; Dabauvalle, Marie-Christine; Lewandrowski, Urs; Winkler, Christiane; Sickmann, Albert; Buchner, Erich
    The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies.
  • Item
    Compomics-utilities: An open-source Java library for computational proteomics
    (London : BioMed Central, 2011) Barsnes, Harald; Vaudel, Marc; Helsens, Kenny; Sickmann, Albert; Walther, Dirk; Berven, Frode S.
    The growing interest in the field of proteomics has increased the demand for software tools and applications that process and analyze the resulting data. And even though the purpose of these tools can vary significantly, they usually share a basic set of features, including the handling of protein and peptide sequences, the visualization of (and interaction with) spectra and chromatograms, and the parsing of results from various proteomics search engines. Developers typically spend considerable time and effort implementing these support structures, which detracts from working on the novel aspects of their tool.