Search Results

Now showing 1 - 10 of 84
  • Item
    Vertical soil profiling using a galvanic contact resistivity scanning approach
    (Basel : MDPI, 2014) Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel
    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.
  • Item
    Nb-modified Ce/Ti oxide catalyst for the selective catalytic reduction of NO with NH3 at low temperature
    (Basel : MDPI, 2018) Mosrati, Jawaher; Atia, Hanan; Eckelt, Reinhard; Lund, Henrik; Agostini, Giovanni; Bentrup, Ursula; Rockstroh, Nils; Keller, Sonja; Armbruster, Udo; Mhamdi, Mourad
    Recently, great attention has been paid to Ceria-based materials for selective catalytic reduction (SCR) with NH3 owing to their unique redox, oxygen storage, and acid-base properties. Two series of bimetallic catalysts issued from Titania modified by Ce and Nb were prepared by the one-step sol-gel method (SG) and by the sol-gel route followed by impregnation (WI). The resulting core-shell and bulk catalysts were tested in NH3-SCR of NOx. The impregnated Nb5/Ce40/Ti100 (WI) catalyst displayed 95% NOx conversion at 200 °C (GHSV = 60,000 mL·g−1·h−1, 1000 ppm NOx, 1000 ppm NH3, 5% O2/He) without forming N2O. The catalysts were characterized by various methods including ICP-OES, N2-physisorption, XRD, Raman, NH3-TPD, DRIFTS, XPS, and H2-TPR. The results showed that the introduction of Nb decreases the surface area and strengthens the surface acidity. This behavior can be explained by the strong interaction between Ceria and Titania which generates Ce-O-Ti units, as well as a high concentration of amorphous or highly dispersed Niobia. This should be the reason for the excellent performance of the catalyst prepared by the sol-gel method followed by impregnation. Furthermore, Nb5/Ce40/Ti100 (WI) has the largest NH3 adsorption capacity, which is helpful to promote the NH3-SCR reaction. The long-term stability and the effect of H2O on the catalysts were also evaluated.
  • Item
    Management scenarios of the Grand Ethiopian Renaissance Dam and their impacts under recent and future climates
    (Basel : MDPI, 2017) Liersch, Stefan; Koch, Hagen; Hattermann, Fred Fokko
    Close to the border with Sudan, Ethiopia is currently building the largest hydroelectric power plant in Africa with a storage volume corresponding to approximately 1.5 years of the mean discharges of the Blue Nile. This endeavor is controversially debated in the public and the scientific literature. Contributing to this discussion, by shading some light on climate change issues, an eco-hydrological model, equipped with a reservoir module, was applied to investigate downstream hydrological impacts during filling and regular operation, the latter considering climate change projected by an ensemble of 10 global and regional climate models. Our results show that at the earliest after 20 months, the dam could produce hydroelectric power. Full supply level may be reached after four years or not at all, depending on filling policies and assumptions of seepage rates. Under recent hydro-climatic conditions, the dam may produce 13 TWh −a , which is below the envisaged target of 15.7 TWh −a . The ensemble mean suggests slightly increasing hydropower production in the future. Almost independently of the operation rules, the highly variable discharge regime will be significantly altered to a regime with almost equal flows each month. Achieving a win-win situation for all riparian countries requires a high level of cooperation in managing the Eastern Nile water resources.
  • Item
    Modeling of two different water uptake approaches for mono-and mixed-species forest stands
    (Basel : MDPI, 2015) Gutsch, Martin; Lasch-Born, Petra; Suckow, Felicitas; Reyer, Christopher P.O.
    To assess how the effects of drought could be better captured in process-based models, this study simulated and contrasted two water uptake approaches in Scots pine and Scots pine-Sessile oak stands. The first approach consisted of an empirical function for root water uptake (WU1). The second approach was based on differences of soil water potential along a soil-plant-atmosphere continuum (WU2) with total root resistance varying at low, medium and high total root resistance levels. Three data sets on different time scales relevant for tree growth were used for model evaluation: Two short-term datasets on daily transpiration and soil water content as well as a long-term dataset on annual tree ring increments. Except WU2 with high total root resistance, all transpiration outputs exceeded observed values. The strongest correlation between simulated and observed annual tree ring width occurred with WU2 and high total root resistance. The findings highlighted the importance of severe drought as a main reason for small diameter increment. However, if all three data sets were taken into account, no approach was superior to the other. We conclude that accurate projections of future forest productivity depend largely on the realistic representation of root water uptake in forest model simulations.
  • Item
    Carbon nanotubes filled with ferromagnetic materials
    (Basel : MDPI, 2010) Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd
    Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.
  • Item
    Reliability of inference of directed climate networks using conditional mutual information
    (Basel : MDPI, 2013) Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Runge, Jakob; Marwan, Norbert; Kurths, Jürgen; Paluš, Milan
    Across geosciences, many investigated phenomena relate to specific complex systems consisting of intricately intertwined interacting subsystems. Such dynamical complex systems can be represented by a directed graph, where each link denotes an existence of a causal relation, or information exchange between the nodes. For geophysical systems such as global climate, these relations are commonly not theoretically known but estimated from recorded data using causality analysis methods. These include bivariate nonlinear methods based on information theory and their linear counterpart. The trade-off between the valuable sensitivity of nonlinear methods to more general interactions and the potentially higher numerical reliability of linear methods may affect inference regarding structure and variability of climate networks. We investigate the reliability of directed climate networks detected by selected methods and parameter settings, using a stationarized model of dimensionality-reduced surface air temperature data from reanalysis of 60-year global climate records. Overall, all studied bivariate causality methods provided reproducible estimates of climate causality networks, with the linear approximation showing higher reliability than the investigated nonlinear methods. On the example dataset, optimizing the investigated nonlinear methods with respect to reliability increased the similarity of the detected networks to their linear counterparts, supporting the particular hypothesis of the near-linearity of the surface air temperature reanalysis data.
  • Item
    Continuously operating biosensor and its integration into a hermetically sealed medical implant
    (Basel : MDPI, 2016) Birkholz, Mario; Glogener, Paul; Glös, Franziska; Basmer, Thomas; Theuer, Lorenz
    An integration concept for an implantable biosensor for the continuous monitoring of blood sugar levels is presented. The system architecture is based on technical modules used in cardiovascular implants in order to minimize legal certification efforts for its perspective usage in medical applications. The sensor chip operates via the principle of affinity viscometry, which is realized by a fully embedded biomedical microelectromechanical systems (BioMEMS) prepared in 0.25-µm complementary metal–oxide–semiconductor (CMOS)/BiCMOS technology. Communication with a base station is established in the 402–405 MHz band used for medical implant communication services (MICS). The implant shall operate within the interstitial tissue, and the hermetical sealing of the electronic system against interaction with the body fluid is established using titanium housing. Only the sensor chip and the antenna are encapsulated in an epoxy header closely connected to the metallic housing. The study demonstrates that biosensor implants for the sensing of low-molecular-weight metabolites in the interstitial may successfully rely on components already established in cardiovascular implantology.
  • Item
    A comparison of carbon footprint and production cost of different pasta products based on whole egg and pea flour
    (Basel : MDPI, 2016) Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas
    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.
  • Item
    Measuring device for air speed in macroporous media and its application inside apple storage bins
    (Basel : MDPI, 2018) Geyer, Martin; Praeger, Ulrike; Truppel, Ingo; Scaar, Holger; Neuwald, Daniel A.; Jedermann, Reiner; Gottschalk, Klaus
    In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0–1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room.
  • Item
    Comparative advantage of maize- and grass-silage based feedstock for biogas production with respect to greenhouse gas mitigation
    (Basel : MDPI, 2016) Meyer-Aurich, Andreas; Lochmann, Yulia; Klauss, Hilde; Prochnow, Annette
    This paper analyses the comparative advantage of using silage maize or grass as feedstock for anaerobic digestion to biogas from a greenhouse gas (GHG) mitigation point of view, taking into account site-specific yield potentials, management options, and land-use change effects. GHG emissions due to the production of biogas were calculated using a life-cycle assessment approach for three different site conditions with specific yield potentials and adjusted management options. While for the use of silage maize, GHG emissions per energy unit were the same for different yield potentials, and the emissions varied substantially for different grassland systems. Without land-use change effects, silage maize-based biogas had lower GHG emissions per energy unit compared to grass-based biogas. Taking land-use change into account, results in a comparative advantage of biogas production from grass-based feedstock produced on arable land compared to silage maize-based feedstock. However, under current frame conditions, it is quite unrealistic that grass production systems would be established on arable land at larger scale.