Search Results

Now showing 1 - 2 of 2
  • Item
    Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots
    (London : Nature Publishing Group, 2016) Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.
    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.
  • Item
    Twinned growth behaviour of two-dimensional materials
    (London : Nature Publishing Group, 2016) Zhang, Tao; Jiang, Bei; Xu, Zhen; Mendes, Rafael G.; Xiao, Yao; Chen, Linfeng; Fang, Liwen; Gemming, Thomas; Chen, Shengli; Rümmeli, Mark H.; Fu, Lei
    Twinned growth behaviour in the rapidly emerging area of two-dimensional nanomaterials still remains unexplored although it could be exploited to fabricate heterostructure and superlattice materials. Here we demonstrate how one can utilize the twinned growth relationship between two two-dimensional materials to construct vertically stacked heterostructures. As a demonstration, we achieve 100% overlap of the two transition metal dichalcogenide layers constituting a ReS2/WS2 vertical heterostructure. Moreover, the crystal size of the stacked structure is an order of magnitude larger than previous reports. Such twinned transition metal dichalcogenides vertical heterostructures exhibit great potential for use in optical, electronic and catalytic applications. The simplicity of the twinned growth can be utilized to expand the fabrication of other heterostructures or two-dimensional material superlattice and this strategy can be considered as an enabling technology for research in the emerging field of two-dimensional van der Waals heterostructures.