Search Results

Now showing 1 - 10 of 11
  • Item
    Using machine-learning to optimize phase contrast in a low-cost cellphone microscope
    (San Francisco, CA : Public Library of Science, 2018) Diederich, Benedict; Wartmann, Rolf; Schadwinkel, Harald; Heintzmann, Rainer
    Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are widespread. This opens new prospects to use such existing computational and imaging resources to perform medical diagnosis in developing countries at a very low cost. Many relevant samples, like biological cells or waterborn parasites, are almost fully transparent. As they do not exhibit absorption, but alter the light’s phase only, they are almost invisible in brightfield microscopy. Expensive equipment and procedures for microscopic contrasting or sample staining often are not available. Dedicated illumination approaches, tailored to the sample under investigation help to boost the contrast. This is achieved by a programmable illumination source, which also allows to measure the phase gradient using the differential phase contrast (DPC) [1, 2] or even the quantitative phase using the derived qDPC approach [3]. By applying machine-learning techniques, such as a convolutional neural network (CNN), it is possible to learn a relationship between samples to be examined and its optimal light source shapes, in order to increase e.g. phase contrast, from a given dataset to enable real-time applications. For the experimental setup, we developed a 3D-printed smartphone microscope for less than 100 $ using off-the-shelf components only such as a low-cost video projector. The fully automated system assures true Koehler illumination with an LCD as the condenser aperture and a reversed smartphone lens as the microscope objective. We show that the effect of a varied light source shape, using the pre-trained CNN, does not only improve the phase contrast, but also the impression of an improvement in optical resolution without adding any special optics, as demonstrated by measurements.
  • Item
    Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb
    (London : Nature Publishing Group, 2018) Agrapidis, Cliò Efthimia; van den Brink, Jeroen; Nishimoto, Satoshi
    We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points ϕ=π2 and φ=3π2 are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl3, a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory.
  • Item
    Strengthening of Al-Fe3Al composites by the generation of harmonic structures
    (London : Nature Publishing Group, 2018) Shahid, R.N.; Scudino, S.
    Strengthening of alloys can be efficiently attained by the creation of harmonic structures: bimodal microstructures generated by controlled milling of the particulate precursors, which consist of coarse-grained cores embedded in a continuous fine-grained matrix. Here, we extend the concept of harmonic structures to metal matrix composites and analyze the effectiveness of such bimodal microstructures for strengthening composites consisting of a pure Al matrix reinforced with Fe3Al particles. Preferential microstructural refinement limited to the surface of the particles, where the Fe3Al phase is progressively fragmented, occurs during ball milling of the Al-Fe3Al composite powder mixtures. The refined surface becomes the continuous fine-grained matrix that encloses macro-regions with coarser reinforcing particles in the harmonic composites synthesized during subsequent powder consolidation. The generation of the bimodal microstructure has a significant influence on the strength of the harmonic composites, which exceeds that of the conventional material by a factor of 2 while retaining considerable plastic deformation. Finally, modeling of the mechanical properties indicates that the strength of the harmonic composites can be accurately described by taking into account both the volume fraction of reinforcement and the characteristic microstructural features describing the harmonic structure.
  • Item
    Measuring device for air speed in macroporous media and its application inside apple storage bins
    (Basel : MDPI, 2018) Geyer, Martin; Praeger, Ulrike; Truppel, Ingo; Scaar, Holger; Neuwald, Daniel A.; Jedermann, Reiner; Gottschalk, Klaus
    In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0–1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room.
  • Item
    1,1-Bis(di­phenyl­phosphor­yl)hydrazine
    (Chester : International Union of Crystallography, 2018) Höhne, Martha; Aluri, Bhaskar R.; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title compound, C24H22N2O2P2, contains a diphosphazane backbone, as well as a hydrazine entity. The P—N—P diphosphazane unit and the N-amine N atom are almost coplanar, and the O atoms of the Ph2P(O) units are oriented trans to each other with respect to the P...P axis. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of N—H...O hydrogen bonds, forming rings of graph-set motif R22(10).
  • Item
    Palladium-catalyzed synthesis of aldehydes from aryl iodides and formic acid with propylphosphonic anhydride as the activator
    (London : Nature Publishing Group, 2018) Wu, Xiao-Feng
    An interesting palladium-catalyzed carbonylative procedure for the synthesis of aromatic aldehydes from aryl iodides has been developed. By using propylphosphonic anhydride as the activator for formic acid, moderate to good yields of the corresponding aldehydes were produced with formic acid as the carbonyl and hydrogen donors. Interestingly, neither additional phosphine ligand nor inert gas protection is needed here.
  • Item
    Interfacing optical fibers with plasmonic nanoconcentrators
    (Berlin : de Gruyter, 2018) Tuniz, Alessandro; Schmidt, Markus A.
    The concentration of light to deep-subwavelength dimensions plays a key role in nanophotonics and has the potential to bring major breakthroughs in fields demanding to understand and initiate interaction on nanoscale dimensions, including molecular disease diagnostics, DNA sequencing, single nanoparticle manipulation and characterization, and semiconductor inspection. Although planar metallic nanostructures provide a pathway to nanoconcentration of electromagnetic fields, the delivery/collection of light to/from such plasmonic nanostructures is often inefficient, narrow-band, and requires complicated excitations schemes, limiting widespread applications. Moreover, planar photonic devices reveal a reduced flexibility in terms of bringing the probe light to the sample. An ideal photonic-plasmonic device should combine (i) a high spatial resolution at the nanometre level beyond to what is state-of-the-art in near-field microscopy with (ii) flexible optical fibers to promote a straightforward integration into current near-field scanning microscopes. Here, we review the recent development and main achievements of nanoconcentrators interfacing optical fibers at their end-faces that reach entirely monolithic designs, including campanile probes, gold-coated fiber-taper nanotips, and fiber-integrated gold nanowires.
  • Item
    Modulations in martensitic Heusler alloys originate from nanotwin ordering
    (London : Nature Publishing Group, 2018) Gruner, M.E.; Niemann, R.; Entel, P.; Pentcheva, R.; Rößler, U.K.; Nielsch, K.; Fähler, S.
    Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite.
  • Item
    Silica nanoparticles for intracellular protein delivery: A novel synthesis approach using green fluorescent protein
    (London : BioMed Central, 2017) Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette
    In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.
  • Item
    Evaluation of surface cleaning procedures for CTGS substrates for SAW technology with XPS
    (Basel : MDPI, 2017) Brachmann, Erik; Seifert, Marietta; Oswald, Steffen; Menzel, Siegfried B.; Gemming, Thomas
    A highly efficient and reproducible cleaning procedure of piezoelectric substrates is essential in surface acoustic waves (SAW) technology to fabricate high-quality SAW devices, especially for new applications such SAW sensors wherein new materials for piezoelectric substrates and interdigital transducers are used. Therefore, the development and critical evaluation of cleaning procedures for each material system that is under consideration becomes crucial. Contaminants like particles or the presence of organic/inorganic material on the substrate can dramatically influence and alter the properties of the thin film substrate composite, such as wettability, film adhesion, film texture, and so on. In this article, focus is given to different cleaning processes like SC-1 and SC-2, UV-ozone treatment, as well as cleaning by first-contact polymer Opticlean, which are applied for removal of contaminants from the piezoelectric substrate Ca 3 TaGa 3 Si 2 O 14 . By means of X-ray photoelectron spectroscopy, the presence of the most critical contaminants such as carbon, sodium, and iron removed through different cleaning procedures were studied and significant differences were observed between the outcomes of these procedures. Based on these results, a two-step cleaning process, combining SC-1 at a reduced temperature at 30 ∘ C instead of 80 ∘ C and a subsequent UV-ozone cleaning directly prior to deposition of the metallization, is suggested to achieve the lowest residual contamination level.