Search Results

Now showing 1 - 10 of 77
  • Item
    Chemistry of new particle growth in mixed urban and biogenic emissions - Insights from CARES
    (München : European Geopyhsical Union, 2014) Setyan, A.; Song, C.; Merkel, M.; Knighton, W.B.; Onasch, T.B.; Canagaratna, M.R.; Worsnop, D.R.; Wiedensohler, A.; Shilling, J.E.; Zhang, Q.
    Regional new particle formation and growth events (NPEs) were observed on most days over the Sacramento and western Sierra foothills area of California in June 2010 during the Carbonaceous Aerosols and Radiative Effect Study (CARES). Simultaneous particle measurements at both the T0 (Sacramento, urban site) and the T1 (Cool, rural site located ~40 km northeast of Sacramento) sites of CARES indicate that the NPEs usually occurred in the morning with the appearance of an ultrafine mode at ~15 nm (in mobility diameter, Dm, measured by a mobility particle size spectrometer operating in the range 10-858 nm) followed by the growth of this modal diameter to ~50 nm in the afternoon. These events were generally associated with southwesterly winds bringing urban plumes from Sacramento to the T1 site. The growth rate was on average higher at T0 (7.1 ± 2.7 nm h−1) than at T1 (6.2 ± 2.5 nm h−1), likely due to stronger anthropogenic influences at T0. Using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), we investigated the evolution of the size-resolved chemical composition of new particles at T1. Our results indicate that the growth of new particles was driven primarily by the condensation of oxygenated organic species and, to a lesser extent, ammonium sulfate. New particles appear to be fully neutralized during growth, consistent with high NH3 concentration in the region. Nitrogen-containing organic ions (i.e., CHN+, CH4N+, C2H3N+, and C2H4N+) that are indicative of the presence of alkyl-amine species in submicrometer particles enhanced significantly during the NPE days, suggesting that amines might have played a role in these events. Our results also indicate that the bulk composition of the ultrafine mode organics during NPEs was very similar to that of anthropogenically influenced secondary organic aerosol (SOA) observed in transported urban plumes. In addition, the concentrations of species representative of urban emissions (e.g., black carbon, CO, NOx, and toluene) were significantly higher whereas the photo-oxidation products of biogenic VOCs (volatile organic compounds) and the biogenically influenced SOA also increased moderately during the NPE days compared to the non-event days. These results indicate that the frequently occurring NPEs over the Sacramento and Sierra Nevada regions were mainly driven by urban plumes from Sacramento and the San Francisco Bay Area, and that the interaction of regional biogenic emissions with the urban plumes has enhanced the new particle growth. This finding has important implications for quantifying the climate impacts of NPEs on global scale.
  • Item
    Modelling Ag-particle activation and growth in a TSI WCPC model 3785
    (München : European Geopyhsical Union, 2010) Stratmann, F.; Herrmann, E.; Petäjä, T.; Kulmala, M.
    In this work, we modelled activation and growth of silver particles in the water-operated TSI model 3785 water condensation particle counter (WCPC). Our objective was to investigate theoretically how various effects influence the counting efficiency of this CPC. Coupled fluid and particle dynamic processes were modelled with the computational fluid dynamics (CFD) code FLUENT in combination with the Fine Particle Model (FPM) to obtain profiles of temperature, vapour concentration, nucleation rate, and particle size. We found that the counting efficiency of the TSI 3785 for small particles might be affected by the presence of larger particles. Moreover, homogeneous nucleation processes can significantly influence counting efficiency.
  • Item
    Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions
    (München : European Geopyhsical Union, 2012) Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A.M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J.A.; Swietlick, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S.G.; O'Dowd, C.D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P.H.; Deng, Z.; Zhao, C.S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.
    Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.
  • Item
    Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign
    (München : European Geopyhsical Union, 2013) Wu, Z.J.; Poulain, L.; Henning, S.; Dieckmann, K.; Birmili, W.; Merkel, M.; van Pinxteren, D.; Spindler, G.; Müller, K.; Stratmann, F.; Herrmann, H.; Wiedensohler, A.
    Particle hygroscopic growth at 90% RH (relative humidity), cloud condensation nuclei (CCN) activity, and size-resolved chemical composition were concurrently measured in the Thüringer Wald mid-level mountain range in central Germany in the fall of 2010. The median hygroscopicity parameter values, κ, of 50, 75, 100, 150, 200, and 250 nm particles derived from hygroscopicity measurements are respectively 0.14, 0.14, 0.17, 0.21, 0.24, and 0.28 during the sampling period. The closure between HTDMA (Hygroscopicity Tandem Differential Mobility Analyzers)-measured (κHTDMA) and chemical composition-derived (κchem) hygroscopicity parameters was performed based on the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. Using size-averaged chemical composition, the κ values are substantially overpredicted (30 and 40% for 150 and 100 nm particles). Introducing size-resolved chemical composition substantially improved closure. We found that the evaporation of NH4NO3, which may happen in a HTDMA system, could lead to a discrepancy in predicted and measured particle hygroscopic growth. The hygroscopic parameter of the organic fraction, κorg, is positively correlated with the O : C ratio (κorg = 0.19 × (O : C) − 0.03). Such correlation is helpful to define the κorg value in the closure study. κ derived from CCN measurement was around 30% (varied with particle diameters) higher than that determined from particle hygroscopic growth measurements (here, hydrophilic mode is considered only). This difference might be explained by the surface tension effects, solution non-ideality, gas-particle partitioning of semivolatile compounds, and the partial solubility of constituents or non-dissolved particle matter. Therefore, extrapolating from HTDMA data to properties at the point of activation should be done with great care. Finally, closure study between CCNc (cloud condensation nucleus counter)-measured (κCCN) and chemical composition (κCCN, chem) was performed using CCNc-derived κ values for individual components. The results show that the κCCN can be well predicted using particle size-resolved chemical composition and the ZSR mixing rule.
  • Item
    Saharan dust contribution to the Caribbean summertime boundary layer - A lidar study during SALTRACE
    (München : European Geopyhsical Union, 2016) Groß, Silke; Gasteiger, Josef; Freudenthaler, Volker; Müller, Thomas; Sauer, Daniel; Toledano, Carlos; Ansmann, Albert
    Dual-wavelength lidar measurements with the small lidar system POLIS of the Ludwig-Maximilians-Universität München were performed during the SALTRACE experiment at Barbados in June and July 2013. Based on high-accuracy measurements of the linear depolarization ratio down to about 200 m above ground level, the dust volume fraction and the dust mass concentration within the convective marine boundary layer can be derived. Additional information from radiosonde launches at the ground-based measurement site provide independent information on the convective marine boundary layer height and the meteorological situation within the convective marine boundary layer. We investigate the lidar-derived optical properties, the lidar ratio and the particle linear depolarization ratio at 355 and 532 nm and find mean values of 0.04 (SD 0.03) and 0.05 (SD 0.04) at 355 and 532 nm, respectively, for the particle linear depolarization ratio, and (26 ± 5) sr for the lidar ratio at 355 and 532 nm. For the concentration of dust in the convective marine boundary layer we find that most values were between 20 and 50 µgm−3. On most days the dust contribution to total aerosol volume was about 30–40 %. Comparing the dust contribution to the column-integrated sun-photometer measurements we see a correlation between high dust contribution, high total aerosol optical depth and a low Angström exponent, and of low dust contribution with low total aerosol optical depth.
  • Item
    On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW – Spain)
    (München : European Geopyhsical Union, 2011) Sorribas, M.; de la Morena, B.A.; Wehner, B.; López, J.F.; Prats, N.; Mogo, S.; Wiedensohler, A.; Cachorro, V.E.
    This study focuses on the analysis of the sub-micron aerosol characteristics at El Arenosillo Station, a rural and coastal environment in South-western Spain between 1 August 2004 and 31 July 2006 (594 days). The mean total concentration (NT) was 8660 cm−3 and the mean concentrations in the nucleation (NNUC), Aitken (NAIT) and accumulation (NACC) particle size ranges were 2830 cm−3, 4110 cm−3 and 1720 cm−3, respectively. Median size distribution was characterised by a single-modal fit, with a geometric diameter, median number concentration and geometric standard deviation of 60 nm, 5390 cm−3 and 2.31, respectively. Characterisation of primary emissions, secondary particle formation, changes to meteorology and long-term transport has been necessary to understand the seasonal and annual variability of the total and modal particle concentration. Number concentrations exhibited a diurnal pattern with maximum concentrations around noon. This was governed by the concentrations of the nucleation and Aitken modes during the warm seasons and only by the nucleation mode during the cold seasons. Similar monthly mean total concentrations were observed throughout the year due to a clear inverse variation between the monthly mean NNUC and NACC. It was related to the impact of desert dust and continental air masses on the monthly mean particle levels. These air masses were associated with high values of NACC which suppressed the new particle formation (decreasing NNUC). Each day was classified according to a land breeze flow or a synoptic pattern influence. The median size distribution for desert dust and continental aerosol was dominated by the Aitken and accumulation modes, and marine air masses were dominated by the nucleation and Aitken modes. Particles moved offshore due to the land breeze and had an impact on the particle burden at noon, especially when the wind was blowing from the NW sector in the morning during summer time. This increased NNUC and NAIT by factors of 3.1 and 2.4, respectively. Nucleation events with the typical "banana" shape were characterised by a mean particle nucleation rate of 0.74 cm−3 s−1, a mean growth rate of 1.96 nm h−1 and a mean total duration of 9.25 h (starting at 10:55 GMT and ending at 20:10 GMT). They were observed for 48 days. Other nucleation events were identified as those produced by the emissions from the industrial areas located at a distance of 35 km. They were observed for 42 days. Both nucleation events were strongly linked to the marine air mass origin.
  • Item
    Characteristics of regional new particle formation in urban and regional background environments in the North China Plain
    (München : European Geopyhsical Union, 2013) Wang, Z.B.; Hu, M.; Sun, J.Y.; Wu, Z.J.; Yue, D.L.; Shen, X.J.; Zhang, Y.M.; Pei, X.Y.; Cheng, Y.F.; Wiedensohler, A.
    Long-term measurements of particle number size distributions were carried out both at an urban background site (Peking University, PKU) and a regional Global Atmospheric Watch station (Shangdianzi, SDZ) from March to November in 2008. In total, 52 new particle formation (NPF) events were observed simultaneously at both sites, indicating that this is a regional phenomenon in the North China Plain. On average, the mean condensation sink value before the nucleation events started was 0.025 s−1 in the urban environment, which was 1.6 times higher than that at regional site. However, higher particle formation and growth rates were observed at PKU (10.8 cm−3 s−1 and 5.2 nm h−1) compared with those at SDZ (4.9 cm−3 s−1 and 4.0 nm h−1). These results implied that precursors were much more abundant in the polluted urban environment. Different from the observations in cleaner environments, the background conditions of the observed particle homogeneous nucleation events in the North China Plain could be characterized as the co-existing of a stronger source of precursor gases and a higher condensational sink of pre-existing aerosol particles. Secondary aerosol formation following nucleation events results in an increase of particle mass concentration, particle light scattering coefficient, and cloud condensation nuclei (CCN) number concentration, with consequences on visibility, radiative effects, and air quality. Typical regional NPF events with significant particle nucleation rates and subsequent particle growth over a sufficiently long time period at both sites were chosen to investigate the influence of NPF on the number concentration of "potential" CCN. As a result, the NPF and the subsequent condensable growth increased the CCN number concentration in the North China Plain by factors in the range from 5.6 to 8.7. Moreover, the potential contribution of anthropogenic emissions to the CCN number concentration was more than 50%, to which more attention should be drawn in regional and global climate modeling, especially in the polluted urban areas.
  • Item
    Trace metal characterization of aerosol particles and cloud water during HCCT 2010
    (München : European Geopyhsical Union, 2015) Fomba, K.W.; van Pinxteren, D.; Müller, K.; Iinuma, Y.; Lee, T.; Collett Jr., J.L.; Herrmann, H.
    Trace metal characterization of bulk and size-resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCEs) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2–111.6 and 1.1–32.1 ng m−3, respectively. Fe, Mn, and Ti were mainly found in coarse mode aerosols while Zn, Pb, and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe and Mn were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L−1, respectively. A non-uniform distribution of soluble Fe, Cu, and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm, while Mn was found mostly in larger drops greater than 22 μm. Fe(III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L−1. In contrast to other studies, Fe(II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol–cloud interaction did not lead to a marked increase in soluble trace metal concentrations; rather it led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces.
  • Item
    Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles
    (München : European Geopyhsical Union, 2011) Rose, D.; Gunthe, S.S.; Su, H.; Garland, R.M.; Yang, H.; Berghof, M.; Cheng, Y.F.; Wehner, B.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Hu, M.; Zhang, Y.; Andreae, M.O.; Pöschl, U.
    Size-resolved chemical composition, mixing state, and cloud condensation nucleus (CCN) activity of aerosol particles in polluted mega-city air and biomass burning smoke were measured during the PRIDE-PRD2006 campaign near Guangzhou, China, using an aerosol mass spectrometer (AMS), a volatility tandem differential mobility analyzer (VTDMA), and a continuous-flow CCN counter (DMT-CCNC). The size-dependence and temporal variations of the effective average hygroscopicity parameter for CCN-active particles (κa) could be parameterized as a function of organic and inorganic mass fractions (forg, finorg) determined by the AMS: κa,p=κorg·forg + κinorg·finorg. The characteristic κ values of organic and inorganic components were similar to those observed in other continental regions of the world: κorg≈0.1 and κinorg≈0.6. The campaign average κa values increased with particle size from ~0.25 at ~50 nm to ~0.4 at ~200 nm, while forg decreased with particle size. At ~50 nm, forg was on average 60% and increased to almost 100% during a biomass burning event. The VTDMA results and complementary aerosol optical data suggest that the large fractions of CCN-inactive particles observed at low supersaturations (up to 60% at S≤0.27%) were externally mixed weakly CCN-active soot particles with low volatility (diameter reduction <5% at 300 °C) and effective hygroscopicity parameters around κLV≈0.01. A proxy for the effective average hygroscopicity of the total ensemble of CCN-active particles including weakly CCN-active particles (κt) could be parameterized as a function of κa,p and the number fraction of low volatility particles determined by VTDMA (φLV): κt,p=κa,p−φLV·(κa,p−κLV). Based on κ values derived from AMS and VTDMA data, the observed CCN number concentrations (NCCN,S≈102–104 cm−3 at S = 0.068–0.47%) could be efficiently predicted from the measured particle number size distribution. The mean relative deviations between observed and predicted CCN concentrations were ~10% when using κt,p, and they increased to ~20% when using only κa,p. The mean relative deviations were not higher (~20%) when using an approximate continental average value of κ≈0.3, although the constant κ value cannot account for the observed temporal variations in particle composition and mixing state (diurnal cycles and biomass burning events). Overall, the results confirm that on a global and climate modeling scale an average value of κ≈0.3 can be used for approximate predictions of CCN number concentrations in continental boundary layer air when aerosol size distribution data are available without information about chemical composition. Bulk or size-resolved data on aerosol chemical composition enable improved CCN predictions resolving regional and temporal variations, but the composition data need to be highly accurate and complemented by information about particle mixing state to achieve high precision (relative deviations <20%).
  • Item
    Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): Uncertainties in particle sizing and number size distribution
    (München : European Geopyhsical Union, 2016) Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; dos Santos, Sebastiao Martins; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred
    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5–3 µm is needed.