Search Results

Now showing 1 - 10 of 66
  • Item
    Ferroelectric switching in epitaxial GeTe films
    (New York : American Institute of Physics, 2014) Kolobov, A.V.; Kim, D.J.; Giussani, A.; Fons, P.; Tominaga, J.; Calarco, R.; Gruverman, A.
    In this paper, using a resonance-enhanced piezoresponse force microscopy approach supported by density functional theory computer simulations, we have demonstrated the ferroelectric switching in epitaxial GeTe films. It has been shown that in films with thickness on the order of several nanometers reversible reorientation of polarization occurs due to swapping of the shorter and longer Ge-Te bonds in the interior of the material. It is also hinted that for ultra thin films consisting of just several atomic layers weakly bonded to the substrate, ferroelectric switching may proceed through exchange of Ge and Te planes within individual GeTe layers.
  • Item
    High-spectral-resolution terahertz imaging with a quantum-cascade laser
    (Washington, DC : Optical Society of America, 2016) Hagelschuer, Till; Rothbart, Nick; Richter, Heiko; Wienold, Martin; Schrottke, Lutz; Grahn, Holger T.; Hübers, Heinz-Wilhelm
    We report on a high-spectral-resolution terahertz imaging system operating with a multi-mode quantum-cascade laser (QCL), a fast scanning mirror, and a sensitive Ge:Ga detector. By tuning the frequency of the QCL, several spectra can be recorded in 1.5 s during the scan through a gas cell filled with methanol (CH3OH). These experiments yield information about the local absorption and the linewidth. Measurements with a faster frame rate of up to 3 Hz allow for the dynamic observation of CH3OH gas leaking from a terahertz-transparent tube into the evacuated cell. In addition to the relative absorption, the local pressure is mapped by exploiting the effect of pressure broadening.
  • Item
    Spatial patterns of dissipative polariton solitons in semiconductor microcavities
    (College Park : American Physical Society, 2015) Chana, J.K.; Sich, M.; Fras, F.; Gorbach, A. V.; Skryabin, D. V.; Cancellieri, E.; Cerda-Méndez, E. A.; Biermann, K.; Hey, R.; Santos, P. V.; Skolnick, M.S.; Krizhanovskii, D.N.
    We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energymomentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts.
  • Item
    Evidence for spin to charge conversion in GeTe(111)
    (New York : American Institute of Physics, 2016) Rinaldi, C.; Rojas-Sánchez, J.C.; Wang, R.N.; Fu, Y.; Oyarzun, S.; Vila, L.; Bertoli, S.; Asa, M.; Baldrati, L.; Cantoni, M.; George, J.-M.; Calarco, R.; Fert, A.; Bertacco, R.
    GeTe has been predicted to be the father compound of a new class of multifunctional materials, ferroelectric Rashba semiconductors, displaying a coupling between spin-dependent k-splitting and ferroelectricity. In this paper, we report on epitaxial Fe/GeTe(111) heterostructures grown by molecular beam epitaxy. Spin-pumping experiments have been performed in a radio-frequency cavity by pumping a spin current from the Fe layer into GeTe at the Fe ferromagnetic resonance and detecting the transverse charge current originated in the slab due to spin-to-charge conversion. Preliminary experiments indicate that a clear spin to charge conversion exists, thus unveiling the potential of GeTe for spin-orbitronics.
  • Item
    Doppler-free spectroscopy with a terahertz quantum-cascade laser
    (Washington, DC : Optical Society of America, 2018) Wienold, M.; Alam, T.; Schrottke, L.; Grahn, H.T.; Hübers, H.-W.
    We report on the Doppler-free saturation spectroscopy of a molecular transition at 3.3 THz based on a quantum-cascade laser and an absorption cell in a collinear pump-probe configuration. A Lamb dip with a sub-Doppler linewidth of 170 kHz is observed for a rotational transition of HDO. We found that a certain level of external optical feedback is tolerable as long as the free spectral range of the external cavity is large compared to the width of the absorption line.
  • Item
    Role of interfaces on the stability and electrical properties of Ge2Sb2Te5 crystalline structures
    (London : Nature Publishing Group, 2017) Mio, A.M.; Privitera, S.M.S.; Bragaglia, V.; Arciprete, F.; Cecchi, S.; Litrico, G.; Persch, C.; Calarco, R.; Rimini, E.
    GeSbTe-based materials exhibit multiple crystalline phases, from disordered rocksalt, to rocksalt with ordered vacancy layers, and to the stable trigonal phase. In this paper we investigate the role of the interfaces on the structural and electrical properties of Ge2Sb2Te5. We find that the site of nucleation of the metastable rocksalt phase is crucial in determining the evolution towards vacancy ordering and the stable phase. By properly choosing the substrate and the capping layers, nucleation sites engineering can be obtained, thus promoting or preventing the vacancy ordering in the rocksalt structure or the conversion into the trigonal phase. The vacancy ordering occurs at lower annealing temperatures (170 °C) for films deposited in the amorphous phase on silicon (111), compared to the case of SiO2 substrate (200 °C), or in presence of a capping layer (330 °C). The mechanisms governing the nucleation have been explained in terms of interfacial energies. Resistance variations of about one order of magnitude have been measured upon transition from the disordered to the ordered rocksalt structure and then to the trigonal phase. The possibility to control the formation of the crystalline phases characterized by marked resistivity contrast is of fundamental relevance for the development of multilevel phase change data storage.
  • Item
    Structural investigation of nanocrystalline graphene grown on (6√3 × 6√3)R30°-reconstructed SiC surfaces by molecular beam epitaxy
    (Milton Park : Taylor & Francis, 2013) Schumann, T.; Dubslaff, M.; Oliveira, M.H.; Hanke, M.; Fromm, F.; Seyller, T.; Nemec, L.; Blum, V.; Scheffler, M.; Lopes, J.M.J.
    Growth of nanocrystalline graphene films on (6√3 × 6√3)R30°-reconstructed SiC surfaces was achieved by molecular beam epitaxy, enabling the investigation of quasi-homoepitaxial growth. The structural quality of the graphene films, which is investigated by Raman spectroscopy, increases with growth time. X-ray photoelectron spectroscopy proves that the SiC surface reconstruction persists throughout the growth process and that the synthesized films consist of sp2-bonded carbon. Interestingly, grazing incidence x-ray diffraction measurements show that the graphene domains possess one single in-plane orientation, are aligned to the substrate, and offer a noticeably contracted lattice parameter of 2.450 Å. We correlate this contraction with theoretically calculated reference values (all-electron density functional calculations based on the van der Waals corrected Perdew–Burke–Ernzerhof functional) for the lattice parameter contraction induced in ideal, free-standing graphene sheets by: substrate-induced buckling, the edges of limited-size flakes and typical point defects (monovacancies, divacancies, Stone–Wales defects).
  • Item
    A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler
    (Washington, DC : Optical Society of America, 2010) Richter, H.; Greiner-Bär, M.; Pavlov, S.G.; Semenov, A.D.; Wienold, M.; Schrottke, L.; Giehler, M.; Hey, R.; Grahn, H.T.; Hübers, H.-W.
    We report on the development of a compact, easy-to-use terahertz radiation source, which combines a quantum-cascade laser (QCL) operating at 3.1 THz with a compact, low-input-power Stirling cooler. The QCL, which is based on a two-miniband design, has been developed for high output and low electrical pump power. The amount of generated heat complies with the nominal cooling capacity of the Stirling cooler of 7 W at 65 K with 240 W of electrical input power. Special care has been taken to achieve a good thermal coupling between the QCL and the cold finger of the cooler. The whole system weighs less than 15 kg including the cooler and power supplies. The maximum output power is 8 mW at 3.1 THz. With an appropriate optical beam shaping, the emission profile of the laser is fundamental Gaussian. The applicability of the system is demonstrated by imaging and molecular-spectroscopy experiments.
  • Item
    High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback
    (Washington, DC : Optical Society of America, 2014) Wienold, M.; Röben, B.; Schrottke, L.; Sharma, R.; Tahraoui, A.; Biermann, K.; Grahn, H.T.
    Currently, different competing waveguide and resonator concepts exist for terahertz quantum-cascade lasers (THz QCLs). We examine the continuous-wave (cw) performance of THz QCLs with single-plasmon (SP) and metal-metal (MM) waveguides fabricated from the same wafer. While SP QCLs are superior in terms of output power, the maximum operating temperature for MM QCLs is typically much higher. For SP QCLs, we observed cw operation up to 73 K as compared to 129 K for narrow (≤ 15 μm) MM QCLs. In the latter case, single-mode operation and a narrow beam profile were achieved by applying third-order distributed-feedback gratings and contact pads which are optically insulated from the intended resonators. We present a quantitative analytic model for the beam profile, which is based on experimentally accessible parameters.
  • Item
    Revisiting the local structure in Ge-Sb-Te based chalcogenide superlattices
    (London : Nature Publishing Group, 2016) Casarin, Barbara; Caretta, Antonio; Momand, Jamo; Kooi, Bart J.; Verheijen, Marcel A.; Bragaglia, Valeria; Calarco, Raffaella; Chukalina, Marina; Yu, Xiaoming; Robertson, John; Lange, Felix R.L.; Wuttig, Matthias; Redaelli, Andrea; Varesi, Enrico; Parmigiani, Fulvio; Malvestuto, Marco
    The technological success of phase-change materials in the field of data storage and functional systems stems from their distinctive electronic and structural peculiarities on the nanoscale. Recently, superlattice structures have been demonstrated to dramatically improve the optical and electrical performances of these chalcogenide based phase-change materials. In this perspective, unravelling the atomistic structure that originates the improvements in switching time and switching energy is paramount in order to design nanoscale structures with even enhanced functional properties. This study reveals a high- resolution atomistic insight of the [GeTe/Sb2Te3] interfacial structure by means of Extended X-Ray Absorption Fine Structure spectroscopy and Transmission Electron Microscopy. Based on our results we propose a consistent novel structure for this kind of chalcogenide superlattices.