Search Results

Now showing 1 - 10 of 290
  • Item
    Bicrystalline grain boundary junctions of Co-doped and P-doped Ba-122 thin films
    (Milton Park : Taylor & Francis, 2014) Schmidt, S.; Döring, S.; Schmidl, F.; Kurth, F.; Iida, K.; Holzapfel, B.; Kawaguchi, T.; Mori, Y.; Ikuta, H.; Seidel, P.
    We prepared GB junctions of Ba(Fe0.9Co0.1)2As2 thin films on bicrystalline [00 l]-tilt SrTiO3 substrates. The junctions show clear Josephson effects. Electrical characterization shows asymmetric I-V characteristics which can be described within the resistively shunted junction (RSJ) model. A large excess current is observed. Their formal ICRN product is 20.2 μV at 4.2 K, which is decreased to 6.5 μV when taking Iex into account. Fabrication methods to increase this value are discussed. Additionally, measurements on GB junctions of BaFe2(As0.66P0.34)2 thin films on LSAT bicrystalline substrates are shown. Their symmetric RSJ/flux flow-behavior exhibits a formal ICRN product of 45 μV, whereas the excess corrected value is ll μV.
  • Item
    Effect of nematic ordering on electronic structure of FeSe
    (London : Nature Publishing Group, 2016) Fedorov, A.; Yaresko, A.; Kim, T.K.; Kushnirenko, Y.; Haubold, E.; Wolf, T.; Hoesch, M.; Grüneis, A.; Büchner, B.; Borisenko, S.V.
    Electronically driven nematic order is often considered as an essential ingredient of high-temperature superconductivity. Its elusive nature in iron-based superconductors resulted in a controversy not only as regards its origin but also as to the degree of its influence on the electronic structure even in the simplest representative material FeSe. Here we utilized angle-resolved photoemission spectroscopy and density functional theory calculations to study the influence of the nematic order on the electronic structure of FeSe and determine its exact energy and momentum scales. Our results strongly suggest that the nematicity in FeSe is electronically driven, we resolve the recent controversy and provide the necessary quantitative experimental basis for a successful theory of superconductivity in iron-based materials which takes into account both, spin-orbit interaction and electronic nematicity.
  • Item
    Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb
    (London : Nature Publishing Group, 2018) Agrapidis, Cliò Efthimia; van den Brink, Jeroen; Nishimoto, Satoshi
    We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points ϕ=π2 and φ=3π2 are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl3, a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory.
  • Item
    Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect
    (Milton Park : Taylor & Francis, 2009) Gvozdikov, V.M.; Taut, M.
    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σxx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.
  • Item
    Momentum-resolved superconducting gap in the bulk of Ba1-xK xFe2As2 from combined ARPES and μSR measurements
    (Milton Park : Taylor & Francis, 2009) Evtushinsky, D.V.; Inosov, D.S.; Zabolotnyy, V.B.; Viazovska, M.S.; Khasanov, R.; Amato, A.; Klauss, H.-H.; Luetkens, H.; Niedermayer, Ch.; Sun, G.L.; Hinkov, V.; Lin, C.T.; Varykhalov, A.; Koitzsch, A.; Knupfer, M.; Büchner, B.; Kordyuk, A.A.; Borisenko, S.V.
    Here we present a calculation of the temperature-dependent London penetration depth, λ(T), in Ba1-xKxFe 2As2 (BKFA) on the basis of the electronic band structure (Zabolotnyy et al 2009 Nature 457 569, Zabolotnyy et al 2009 Physica C 469 448) and momentum-dependent superconducting gap (Evtushinsky et al 2009 Phys. Rev. B 79 054517) extracted from angleresolved photoemission spectroscopy (ARPES) data. The results are compared to the direct measurements of λ(T) by muon spin rotation (μSR) (Khasanov et al 2009 Phys. Rev. Lett. 102 187005). The value of λ(T = 0), calculated with no adjustable parameters, equals 270 nm, while the directly measured one is 320 nm; the temperature dependence λ(T) is also easily reproduced. Such agreement between the two completely different approaches allows us to conclude that ARPES studies of BKFA are bulk-representative. Our review of the available experimental studies of the superconducting gap in the new ironbased superconductors in general allows us to state that most of them bear two nearly isotropic gaps with coupling constants 2ΔkBTc = 2.5±1.5 and 7±2.
  • Item
    Absorption and photoemission spectroscopy of rare-earth oxypnictides
    (Milton Park : Taylor & Francis, 2009) Kroll, T.; Roth, F.; Koitzsch, A.; Kraus, R.; Batchelor, D.R.; Werner, J.; Behr, G.; Büchner, B.; Knupfer, M.
    The electronic structure of various rare-earth oxypnictides has been investigated by performing Fe L2, 3 x-ray absorption spectroscopy, and Fe 2p and valence band x-ray photoemission spectroscopy. As representative samples the non-superconducting parent compounds LnFeAsO (Ln=La, Ce, Sm and Gd) have been chosen and measured at 25 and 300 K, i.e. below and above the structural and magnetic phase transition at ~150 K. We find no significant change of the electronic structure of the FeAs layers when switching between the different rare-earth ions or when varying the temperature below and above the transition temperatures. Using a simple two-configuration model, we find qualitative agreement with the Fe 2p3/2 core-level spectrum, which allows for a qualitative explanation of the experimental spectral shapes.
  • Item
    Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system
    (Cambridge : Royal Society of Chemistry, 2014) Restrepo-Pérez, Laura; Meyer, Anne K.; Helbig, Linda; Sanchez, Samuel; Schmidt, Oliver G.
    Sample pre-concentration is crucial to achieve high sensitivity and low detection limits in lab-on-a-chip devices. Here, we present a system in which self-propelled catalytic micromotors are biofunctionalized and trapped acting as an alternative concentrating mechanism. This system requires no external energy source, which facilitates integration and miniaturization.
  • Item
    Self‐assembled on‐chip‐integrated giant magneto‐impedance sensorics
    (Hoboken, NJ : Wiley, 2015) Karnaushenko, Daniil; Karnaushenko, Dmitriy D.; Makarov, Denys; Baunack, Stefan; Schäfer, Rudolf; Schmidt, Oliver G.
    A novel method relying on strain engineering to realize arrays of on‐chip‐integrated giant magneto‐impedance (GMI) sensors equipped with pick‐up coils is put forth. The geometrical transformation of an initially planar layout into a tubular 3D architecture stabilizes favorable azimuthal magnetic domain patterns. This work creates a solid foundation for further development of CMOS compatible GMI sensorics for magnetoencephalography.
  • Item
    A semiconductor laser system for the production of antihydrogen
    (Milton Park : Taylor & Francis, 2012) Müllers, A.; Böttner, S.; Kolbe, D.; Diehl, T.; Koglbauer, A.; Sattler, M.; Stappel, M.; Steinborn, R.; Walz, J.; Gabrielse, G.
    Laser-controlled charge exchange is a promising method for producing cold antihydrogen. Caesium atoms in Rydberg states collide with positrons and create positronium. These positronium atoms then interact with antiprotons, forming antihydrogen. Laser excitation of the caesium atoms is essential to increase the cross section of the charge-exchange collisions. This method was demonstrated in 2004 by the ATRAP collaboration by using an available copper vapour laser. For a second generation of charge-exchange experiments we have designed a new semiconductor laser system that features several improvements compared to the copper vapour laser. We describe this new laser system and show the results from the excitation of caesium atoms to Rydberg states within the strong magnetic fields in the ATRAP apparatus.