Search Results

Now showing 1 - 10 of 37
  • Item
    Trend detection in river flow indices in Poland
    (Heidelberg : Springer, 2018) Piniewski, Mikołaj; Marcinkowski, Paweł; Kundzewicz, Zbigniew W.
    The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly ‘no trend’ results. However, the spatial gradient is apparent only for the data for the period 1981–2016 rather than for 1956–2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.
  • Item
    Changes of snow cover in Poland
    (Heidelberg : Springer, 2017) Szwed, Małgorzata; Pin´skwar, Iwona; Kundzewicz, Zbigniew W.; Graczyk, Dariusz; Mezghani, Abdelkader
    The present paper examines variability of characteristics of snow cover (snow cover depth, number of days with snow cover and dates of beginning and end of snow cover) in Poland. The study makes use of a set of 43 long time series of observation records from the stations in Poland, from 1952 to 2013. To describe temporal changes in snow cover characteristics, the intervals of 1952–1990 and of 1991–2013 are compared and trends in analysed data are sought (e.g., using the Mann–Kendall test). Observed behaviour of time series of snow-related variables is complex and not easy to interpret, for instance because of the location of the research area in the zone of transitional moderate climate, where strong variability of climate events is one of the main attributes. A statistical link between the North Atlantic Oscillation (NAO) index and the snow cover depth, as well as the number of snow cover days is found.
  • Item
    What can we learn from the projections of changes of flow patterns? Results from Polish case studies
    (Heidelberg : Springer, 2017) Piniewski, Mikołaj; Meresa, Hadush Kidane; Romanowicz, Renata; Osuch, Marzena; Szczes´niak, Mateusz; Kardel, Ignacy; Okruszko, Tomasz; Mezghani, Abdelkader; Kundzewicz, Zbigniew W.
    River flow projections for two future time horizons and RCP 8.5 scenario, generated by two projects (CHASE-PL and CHIHE) in the Polish-Norwegian Research Programme, were compared. The projects employed different hydrological models over different spatial domains. The semi-distributed, process-based, SWAT model was used in the CHASE-PL project for the entire Vistula and Odra basins area, whilst the lumped, conceptual, HBV model was used in the CHIHE project for eight Polish catchments, for which the comparison study was made. Climate projections in both studies originated from the common EURO-CORDEX dataset, but they were different, e.g. due to different bias correction approaches. Increases in mean annual and seasonal flows were projected in both studies, yet the magnitudes of changes were largely different, in particular for the lowland catchments in the far future. The HBV-based increases were significantly higher in the latter case than the SWAT-based increases in all seasons except winter. Uncertainty in projections is high and creates a problem for practitioners.
  • Item
    Evolution of the fine structure of magnetic fields in the quiet Sun: Observations from Sunrise/IMaX and extrapolations
    (Heidelberg : Springer, 2013) Wiegelmann, T.; Solanki, S.K.; Borrero, J.M.; Peter, H.; Barthol, P.; Gandorfer, A.; Martínez Pillet, V.; Schmidt, W.; Knölker, M.
    Observations with the balloon-borne Sunrise/Imaging Magnetograph eXperiment (IMaX) provide high spatial resolution (roughly 100 km at disk center) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona, we extrapolate these photospheric measurements into the upper solar atmosphere and analyze a 22-minute long time series with a cadence of 33 seconds. Using the extrapolated magnetic-field lines as tracer, we investigate temporal evolution of the magnetic connectivity in the quiet Sun’s atmosphere. The majority of magnetic loops are asymmetric in the sense that the photospheric field strength at the loop foot points is very different. We find that the magnetic connectivity of the loops changes rapidly with a typical connection recycling time of about 3±1 minutes in the upper solar atmosphere and 12±4 minutes in the photosphere. This is considerably shorter than previously found. Nonetheless, our estimate of the energy released by the associated magnetic-reconnection processes is not likely to be the sole source for heating the chromosphere and corona in the quiet Sun.
  • Item
    Compact SAW aerosol generator
    (Heidelberg : Springer, 2017) Winkler, A.; Harazim, S.; Collins, D.J.; Brünig, R.; Schmidt, H.; Menzel, S.B.
    In this work, we discuss and demonstrate the principle features of surface acoustic wave (SAW) aerosol generation, based on the properties of the fluid supply, the acoustic wave field and the acoustowetting phenomena. Furthermore, we demonstrate a compact SAW-based aerosol generator amenable to mass production fabricated using simple techniques including photolithography, computerized numerical control (CNC) milling and printed circuit board (PCB) manufacturing. Using this device, we present comprehensive experimental results exploring the complexity of the acoustic atomization process and the influence of fluid supply position and geometry, SAW power and fluid flow rate on the device functionality. These factors in turn influence the droplet size distribution, measured here, that is important for applications including liquid chromatography, pulmonary therapies, thin film deposition and olfactory displays.
  • Item
    Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation?
    (Heidelberg : Springer, 2016) Cuello, Friederike; Lorenz, Kristina
    [no abstract available]
  • Item
    “Are machines better than humans in image tagging?” - A user study adds to the puzzle
    (Heidelberg : Springer, 2017) Ewerth, Ralph; Springstein, Matthias; Phan-Vogtmann, Lo An; Schütze, Juliane
    “Do machines perform better than humans in visual recognition tasks?” Not so long ago, this question would have been considered even somewhat provoking and the answer would have been clear: “No”. In this paper, we present a comparison of human and machine performance with respect to annotation for multimedia retrieval tasks. Going beyond recent crowdsourcing studies in this respect, we also report results of two extensive user studies. In total, 23 participants were asked to annotate more than 1000 images of a benchmark dataset, which is the most comprehensive study in the field so far. Krippendorff’s α is used to measure inter-coder agreement among several coders and the results are compared with the best machine results. The study is preceded by a summary of studies which compared human and machine performance in different visual and auditory recognition tasks. We discuss the results and derive a methodology in order to compare machine performance in multimedia annotation tasks at human level. This allows us to formally answer the question whether a recognition problem can be considered as solved. Finally, we are going to answer the initial question.
  • Item
    Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry
    (Heidelberg : Springer, 2010) Perl, Thorsten; Bödeker, Bertram; Jünger, Melanie; Nolte, Jürgen; Vautz, Wolfgang
    Multicapillary column (MCC) ion mobility spectrometers (IMS) are increasingly in demand for medical diagnosis, biological applications and process control. In a MCC-IMS, volatile compounds are differentiated by specific retention time and ion mobility when rapid preseparation techniques are applied, e.g. for the analysis of complex and humid samples. Therefore, high accuracy in the determination of both parameters is required for reliable identification of the signals. The retention time in the MCC is the subject of the present investigation because, for such columns, small deviations in temperature and flow velocity may cause significant changes in retention time. Therefore, a universal correction procedure would be a helpful tool to increase the accuracy of the data obtained from a gas-chromatographic preseparation. Although the effect of the carrier gas flow velocity and temperature on retention time is not linear, it could be demonstrated that a linear alignment can compensate for the changes in retention time due to common minor deviations of both the carrier gas flow velocity and the column temperature around the MCC-IMS standard operation conditions. Therefore, an effective linear alignment procedure for the correction of those deviations has been developed from the analyses of defined gas mixtures under various experimental conditions. This procedure was then applied to data sets generated from real breath analyses obtained in clinical studies using different instruments at different measuring sites for validation. The variation in the retention time of known signals, especially for compounds with higher retention times, was significantly improved. The alignment of the retention time—an indispensable procedure to achieve a more precise identification of analytes—using the proposed method reduces the random error caused by small accidental deviations in column temperature and flow velocity significantly.
  • Item
    The IPCC AR5 guidance note on consistent treatment of uncertainties: A common approach across the working groups
    (Heidelberg : Springer, 2011) Mastrandrea, Michael D.; Mach, Katharine J.; Plattner, Gian-Kasper; Edenhofer, Ottmar; Stocker, Thomas F.; Field, Christopher B.; Ebi, Kristie L.; Matschoss, Patrick R.
    Evaluation and communication of the relative degree of certainty in assessment findings are key cross-cutting issues for the three Working Groups of the Intergovernmental Panel on Climate Change. A goal for the Fifth Assessment Report, which is currently under development, is the application of a common framework with associated calibrated uncertainty language that can be used to characterize findings of the assessment process. A guidance note for authors of the Fifth Assessment Report has been developed that describes this common approach and language, building upon the guidance employed in past Assessment Reports. Here, we introduce the main features of this guidance note, with a focus on how it has been designed for use by author teams. We also provide perspectives on considerations and challenges relevant to the application of this guidance in the contribution of each Working Group to the Fifth Assessment Report. Despite the wide spectrum of disciplines encompassed by the three Working Groups, we expect that the framework of the new uncertainties guidance will enable consistent communication of the degree of certainty in their policy-relevant assessment findings.
  • Item
    Is atmospheric carbon dioxide removal a game changer for climate change mitigation?
    (Heidelberg : Springer, 2013) Kriegler, Elmar; Edenhofer, Ottmar; Reuster, Lena; Luderer, Gunnar; Klein, David
    The ability to directly remove carbon dioxide from the atmosphere allows the decoupling of emissions and emissions control in space and time. We ask the question whether this unique feature of carbon dioxide removal technologies fundamentally alters the dynamics of climate mitigation pathways. The analysis is performed in the coupled energy-economy-climate model ReMIND using the bioenergy with CCS route as an application of CDR technology. BECCS is arguably the least cost CDR option if biomass availability is not a strongly limiting factor. We compare mitigation pathways with and without BECCS to explore the impact of CDR technologies on the mitigation portfolio. Effects are most pronounced for stringent climate policies where BECCS is a key technology for the effectiveness of carbon pricing policies. The decoupling of emissions and emissions control allows prolonging the use of fossil fuels in sectors that are difficult to decarbonize, particularly in the transport sector. It also balances the distribution of mitigation costs across future generations. CDR is not a silver bullet technology. The largest part of emissions reductions continues to be provided by direct mitigation measures at the emissions source. The value of CDR lies in its flexibility to alleviate the most costly constraints on mitigating emissions.