Search Results

Now showing 1 - 4 of 4
  • Item
    Aerosol optical properties in the North China Plain during HaChi campaign: An in-situ optical closure study
    (München : European Geopyhsical Union, 2011) Ma, N.; Zhao, C.S.; Nowak, A.; Müller, T.; Pfeifer, S.; Cheng, Y.F.; Deng, Z.Z.; Liu, P.F.; Xu, W.Y.; Ran, L.; Yan, P.; Göbel, T.; Hallbauer, E.; Mildenberger, K.; Henning, S.; Yu, J.; Chen, L.L.; Zhou, X.J.; Stratmann, F.; Wiedensohler, A.
    The largest uncertainty in the estimation of climate forcing stems from atmospheric aerosols. In early spring and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi (Haze in China) project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP). Aerosol optical properties, including the scattering coefficient (σsp), the hemispheric back scattering coefficient (σbsp), the absorption coefficient (σap), as well as the single scattering albedo (ω), are presented. The diurnal and seasonal variations are analyzed together with meteorology and satellite data. The mean values of σsp, 550 nm of the dry aerosol in spring and summer are 280±253 and 379±251 Mm−1, respectively. The average σap for the two periods is respectively 47±38 and 43±27 Mm−1. The mean values of ω at the wavelength of 637 nm are 0.82±0.05 and 0.86±0.05 for spring and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional aerosol pollution in the NCP. Pronounced diurnal cycle of $σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and the accumulation of local emissions during nighttime. The pollutants transported from the southwest of the NCP are more significant than that from the two megacities, Beijing and Tianjin, in both spring and summer. An optical closure experiment is conducted to better understand the uncertainties of the measurements. Good correlations (R>0.98) are found between the values measured by the nephelometer and the values calculated with a modified Mie model. The Monte Carlo simulation shows an uncertainty of about 30 % for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well with the measured values, indicating a stable performance of instruments and thus reliable aerosol optical data.
  • Item
    Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns
    (München : European Geopyhsical Union, 2016) Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Baltink, Henk Klein; Henzing, J.S. Bas; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, Urs
    Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at  ∼  100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to  ∼  700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34  ±  0.12 and 0.19  ±  0.07 for 500 nm particles, at  ∼  100 and  ∼  700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18  ±  0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from direct measurements was 0.28 ±  0.10, thus considerably higher than κ values measured in Italy in the fully mixed PBL.
  • Item
    Aerosol physical properties and processes in the lower marine boundary layer: A comparison of shipboard sub-micron data from ACE-1 and ACE-2
    (Milton Park : Taylor & Francis, 2016) Bates, Timothy S.; Quinn, Patricia K.; Covert, David S.; Coffman, Derek J.; Johnson, James E.; Wiedensohler, Alfred
    The goals of the IGAC Aerosol Characterization Experiments (ACE) are to determine and understand the properties and controlling processes of the aerosol in a globally representative range of natural and anthropogenically perturbed environments. ACE-1 was conducted in the remote marine atmosphere south of Australia while ACE-2 was conducted in the anthropogenically modified atmosphere of the Eastern North Atlantic. In-situ shipboard measurements from the RV Discoverer(ACE-1) and the RV Professor Vodyanitskiy(ACE-2), combined with calculated back trajectories can be used to define the physical properties of the sub-micron aerosol in marine boundary layer (MBL) air masses from the remote Southern Ocean, Western Europe, the Iberian coast, the Mediterranean and the background Atlantic Ocean. The differences in these aerosol properties, combined with dimethylsulfide, sulfur dioxide and meteorological measurements provide a means to assess processes that affect the aerosol distribution. The background sub-micron aerosol measured over the Atlantic Ocean during ACE-2 was more abundant (number and volume) and appeared to be more aged than that measured over the Southern Ocean during ACE-1. Based on seawater DMS measurements and wind speed, the oceanic source of non-sea-salt sulfur and sea-salt to the background marine atmosphere during ACE-1 and ACE-2 was similar. However, the synoptic meteorological pattern was quite different during ACE-1 and ACE-2. The frequent frontal passages during ACE-1 resulted in the mixing of nucleation mode particles into the marine boundary layer from the free troposphere and relatively short aerosol residence times. In the more stable meteorological setting of ACE-2, a significant nucleation mode aerosol was observed in the MBL only for a half day period associated with a weak frontal system. As a result of the longer MBL aerosol residence times, the average background ACE-2 accumulation mode aerosol had a larger diameter and higher number concentration than during ACE-1. The sub-micron aerosol number size distributions in the air masses that passed over Western Europe, the Mediterranean, and coastal Portugal were distinctly different from each other and the background aerosol. The differences can be attributed to the age of the air mass and the degree of cloud processing.
  • Item
    Characterization of the planetary boundary layer during SAMUM-2 by means of lidar measurements
    (Milton Park : Taylor & Francis, 2017) Groß, Silke; Gasteiger, Josef; Freudenthaler, Volker; Wiegner, Matthias; Geiß, Alexander; Schladitz, Alexander; Toledano, Carlos; Kandler, Konrad; Tesche, Matthias; Ansmann, Albert; Wiedensohler, Alfred
    Measurements with two Raman-depolarization lidars of the Meteorological Institute of the Ludwig-Maximilians- Universit¨at, M¨unchen, Germany, performed during SAMUM-2, were used to characterize the planetary boundary layer (PBL) over Praia, Cape Verde. A novel approach was used to determine the volume fraction of dust υd in the PBL. This approach primarily relies on accurate measurements of the linear depolarization ratio. Comparisons with independent in situ measurements showed the reliability of this approach. Based on our retrievals, two different phases could be distinguished within the measurement period of almost one month. The first (22–31 January 2008) was characterized by high aerosol optical depth (AOD) in the PBL and large υd > 95%. During the second phase, the AOD in the PBL was considerably lower and υd less than ∼40%. These findings were in very good agreement with ground based in situ measurements, when ambient volume fractions are considered that were calculated from the actual measurements of the dry volume fraction. Only in cases when dust was not the dominating aerosol component (second phase), effects due to hygroscopic growth became important.