Search Results

Now showing 1 - 10 of 168
Loading...
Thumbnail Image
Item

The ties that bind - On the impact of losing a consortium member in a cooperatively operated digital preservation system

2016, Lindlar, Michelle

Cooperatively operated digital preservation systems offer institutions of varying size the chance to actively participate in digital preservation. In current times of budget cuts they are also a valuable asset to larger memory institutions. While the benefits of cooperatively operated systems have been discussed before, the risks associated with a consortial solution have not been analyzed in detail. TIB hosts the Goportis Digital Archive which is used by two large national subject libraries as well as by TIB itself. As the host of this comparatively small preservation network, TIB has started to analyze the particular risk which losing a consortium member poses to the overall system operation. This paper presents the current status of this work-in-progress and highlights two areas: risk factors associated with cost and risk factors associated with the content. While the paper is strictly written from the viewpoint of the consortial leader/ host of this specific network, the underlying processes shall be beneficial to other cooperatively operated digital preservation systems.

Loading...
Thumbnail Image
Item

The influence of the in-plane lattice constant on the superconducting transition temperature of FeSe0.7Te0.3 thin films

2017, Yuan, Feifei, Iida, Kazumasa, Grinenko, Vadim, Chekhonin, Paul, Pukenas, Aurimas, Skrotzki, Werner, Sakoda, Masahito, Naito, Michio, Sala, Alberto, Putti, Marina, Yamashita, Aichi, Takano, Yoshihiko, Shi, Zhixiang, Nielsch, Kornelius, Hühne, Ruben

Epitaxial Fe(Se,Te) thin films were prepared by pulsed laser deposition on (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT), CaF2-buffered LSAT and bare CaF2 substrates, which exhibit an almost identical in-plane lattice parameter. The composition of all Fe(Se,Te) films were determined to be FeSe0.7Te0.3 by energy dispersive X-ray spectroscopy, irrespective of the substrate. Albeit the lattice parameters of all templates have comparable values, the in-plane lattice parameter of the FeSe0.7Te0.3 films varies significantly. We found that the superconducting transition temperature (Tc) of FeSe0.7Te0.3 thin films is strongly correlated with their a-axis lattice parameter. The highest Tc of over 19 K was observed for the film on bare CaF2 substrate, which is related to unexpectedly large in-plane compressive strain originating mostly from the thermal expansion mismatch between the FeSe0.7Te0.3 film and the substrate.

Loading...
Thumbnail Image
Item

Controllable sliding transfer of wafer‐size graphene

2016, Lu, Wenjing, Zeng, Mengqi, Li, Xuesong, Wang, Jiao, Tan, Lifang, Shao, Miaomiao, Han, Jiangli, Wang, Sheng, Yue, Shuanglin, Zhang, Tao, Hu, Xuebo, Mendes, Rafael G., Rümmeli, Mark H., Peng, Lianmao, Liu, Zhongfan, Fu, Lei

The innovative design of sliding transfer based on a liquid substrate can succinctly transfer high‐quality, wafer‐size, and contamination‐free graphene within a few seconds. Moreover, it can be extended to transfer other 2D materials. The efficient sliding transfer approach can obtain high‐quality and large‐area graphene for fundamental research and industrial applications.

Loading...
Thumbnail Image
Item

Mechanically reinforced catechol-containing hydrogels with improved tissue gluing performance

2017, Feng, Jun, Ton, Xuan-Anh, Zhao, Shifang, Paez, Julieta I., del Campo, Aránzazu

In situ forming hydrogels with catechol groups as tissue reactive functionalities are interesting bioinspired materials for tissue adhesion. Poly(ethylene glycol) (PEG)–catechol tissue glues have been intensively investigated for this purpose. Different cross-linking mechanisms (oxidative or metal complexation) and cross-linking conditions (pH, oxidant concentration, etc.) have been studied in order to optimize the curing kinetics and final cross-linking degree of the system. However, reported systems still show limited mechanical stability, as expected from a PEG network, and this fact limits their potential application to load bearing tissues. Here, we describe mechanically reinforced PEG–catechol adhesives showing excellent and tunable cohesive properties and adhesive performance to tissue in the presence of blood. We used collagen/PEG mixtures, eventually filled with hydroxyapatite nanoparticles. The composite hydrogels show far better mechanical performance than the individual components. It is noteworthy that the adhesion strength measured on skin covered with blood was >40 kPa, largely surpassing (>6 fold) the performance of cyanoacrylate, fibrin, and PEG–catechol systems. Moreover, the mechanical and interfacial properties could be easily tuned by slight changes in the composition of the glue to adapt them to the particular properties of the tissue. The reported adhesive compositions can tune and improve cohesive and adhesive properties of PEG–catechol-based tissue glues for load-bearing surgery applications.

Loading...
Thumbnail Image
Item

A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly

2017, Lindlar, Michelle, Tunnat, Yvonne, Wilson, Carl

Digital preservation and active software stewardship are both cyclical processes. While digital preservation strategies have to be reevaluated regularly to ensure that they still meet technological and organizational requirements, software needs to be tested with every new release to ensure that it functions correctly. JHOVE is an open source format validation tool which plays a central role in many digital preservation workflows and the PDF module is one of its most important features. Unlike tools such as Adobe PreFlight or veraPDF which check against requirements at profile level, JHOVE’s PDF-module is the only tool that can validate the syntax and structure of PDF files. Despite JHOVE’s widespread and long-standing adoption, the underlying validation rules are not formally or thoroughly tested, leading to bugs going undetected for a long time. Furthermore, there is no ground-truth data set which can be used to understand and test PDF validation at the structural level. The authors present a corpus of light-weight files designed to test the validation criteria of JHOVE’s PDF module against “well-formedness”. We conclude by measuring the code coverage of the test corpus within JHOVE PDF validation and by feeding detected inconsistencies of the PDF-module back into the open source development process.

Loading...
Thumbnail Image
Item

Giant faraday rotation through ultra-small Fe0n clusters in superparamagnetic FeO-SiO2 vitreous films

2017, Nakatsuka, Yuko, Pollok, Kilian, Wieduwilt, Torsten, Langenhorst, Falko, Schmidt, Markus A., Fujita, Koji, Murai, Shunsuke, Tanaka, Katsuhisa, Wondraczek, Lothar

Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass‐based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of xFeO·(100 − x)SiO2, unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.

Loading...
Thumbnail Image
Item

Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors

2017, Leistenschneider, Desirée, Jäckel, Nicolas, Hippauf, Felix, Presser, Volker, Borchardt, Lars

A solvent-free synthesis of hierarchical porous carbons is conducted by a facile and fast mechanochemical reaction in a ball mill. By means of a mechanochemical ball-milling approach, we obtained titanium(IV) citrate-based polymers, which have been processed via high temperature chlorine treatment to hierarchical porous carbons with a high specific surface area of up to 1814 m2 g−1 and well-defined pore structures. The carbons are applied as electrode materials in electric double-layer capacitors showing high specific capacitances with 98 F g−1 in organic and 138 F g−1 in an ionic liquid electrolyte as well as good rate capabilities, maintaining 87% of the initial capacitance with 1 M TEA-BF4 in acetonitrile (ACN) and 81% at 10 A g−1 in EMIM-BF4.

Loading...
Thumbnail Image
Item

Fulleretic well-defined scaffolds: Donor–fullerene alignment through metal coordination and its effect on photophysics

2016, Williams, Derek E., Dolgopolova, Ekaterina A., Godfrey, Danielle C., Ermolaeva, Evgeniya D., Pellechia, Perry J., Greytak, Andrew B., Smith, Mark D., Avdoshenko, Stanislav M., Popov, Alexey A., Shustova, Natalia B.

Herein, we report the first example of a crystalline metal–donor–fullerene framework, in which control of the donor–fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross‐polarization magic‐angle spinning NMR spectroscopy, X‐ray diffraction, and time‐resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy‐transfer (ET) studies of the fulleretic donor–acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well‐defined fulleretic donor–acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics.

Loading...
Thumbnail Image
Item

Germania and alumina dopant diffusion and viscous flow effects at preparation of doped optical fibers

2017, Kobelke, Jens, Schuster, Kay, Bierlich, Jörg, Unger, Sonja, Schwuchow, Anka, Elsmann, Tino, Dellith, Jan, Aichele, Claudia, Fatobene Ando, Ron, Bartelt, Hartmut

We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT) technique). The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.

Loading...
Thumbnail Image
Item

Compact SAW aerosol generator

2017, Winkler, A., Harazim, S., Collins, D.J., Brünig, R., Schmidt, H., Menzel, S.B.

In this work, we discuss and demonstrate the principle features of surface acoustic wave (SAW) aerosol generation, based on the properties of the fluid supply, the acoustic wave field and the acoustowetting phenomena. Furthermore, we demonstrate a compact SAW-based aerosol generator amenable to mass production fabricated using simple techniques including photolithography, computerized numerical control (CNC) milling and printed circuit board (PCB) manufacturing. Using this device, we present comprehensive experimental results exploring the complexity of the acoustic atomization process and the influence of fluid supply position and geometry, SAW power and fluid flow rate on the device functionality. These factors in turn influence the droplet size distribution, measured here, that is important for applications including liquid chromatography, pulmonary therapies, thin film deposition and olfactory displays.