Search Results

Now showing 1 - 2 of 2
  • Item
    Simulating ultrafine particle formation in Europe using a regional CTM: Contribution of primary emissions versus secondary formation to aerosol number concentrations
    (München : European Geopyhsical Union, 2012) Fountoukis, C.; Riipinen, I.; Denier van der Gon, H.A.C.; Charalampidis, P.E.; Pilinis, C.; Wiedensohler, A.; O'Dowd, C.; Putaud, J.P.; Moerman, M.; Pandis, S.N.
    A three-dimensional regional chemical transport model (CTM) with detailed aerosol microphysics, PMCAMx-UF, was applied to the European domain to simulate the contribution of direct emissions and secondary formation to total particle number concentrations during May 2008. PMCAMx-UF uses the Dynamic Model for Aerosol Nucleation and the Two-Moment Aerosol Sectional (TOMAS) algorithm to track both aerosol number and mass concentration using a sectional approach. The model predicts nucleation events that occur over scales of hundreds up to thousands of kilometers especially over the Balkans and Southeast Europe. The model predictions were compared against measurements from 7 sites across Europe. The model reproduces more than 70% of the hourly concentrations of particles larger than 10 nm (N10) within a factor of 2. About half of these particles are predicted to originate from nucleation in the lower troposphere. Regional nucleation is predicted to increase the total particle number concentration by approximately a factor of 3. For particles larger than 100 nm the effect varies from an increase of 20% in the eastern Mediterranean to a decrease of 20% in southern Spain and Portugal resulting in a small average increase of around 1% over the whole domain. Nucleation has a significant effect in the predicted N50 levels (up to a factor of 2 increase) mainly in areas where there are condensable vapors to grow the particles to larger sizes. A semi-empirical ternary sulfuric acid-ammonia-water parameterization performs better than the activation or the kinetic parameterizations in reproducing the observations. Reducing emissions of ammonia and sulfur dioxide affects certain parts of the number size distribution.
  • Item
    Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system
    (München : European Geopyhsical Union, 2015) Schmidt, J.; Ansmann, A.; Bühl, J.; Wandinger, U.
    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary (H2SO4–H2O) system and the ternary system involving ammonia (H2SO4–H2O–NH3) may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary system the formation of H2SO4·NH3 is very likely an essential step in the formation of sulfuric acid dimers, which were measured at 210, 223, and 248 K. We estimate the thermodynamic properties (dH and dS) of the H2SO4·NH3 cluster using a simple heuristic model and the measured data. Furthermore, we report the first measurements of large neutral sulfuric acid clusters containing as many as 10 sulfuric acid molecules for the binary system using chemical ionization–atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry.