Search Results

Now showing 1 - 10 of 96
  • Item
    On deeper human dimensions in Earth system analysis and modelling
    (München : European Geopyhsical Union, 2018) Gerten, Dieter; Schönfeld, Martin; Schauberger, Bernhard
    While humanity is altering planet Earth at unprecedented magnitude and speed, representation of the cultural driving factors and their dynamics in models of the Earth system is limited. In this review and perspectives paper, we argue that more or less distinct environmental value sets can be assigned to religion – a deeply embedded feature of human cultures, here defined as collectively shared belief in something sacred. This assertion renders religious theories, practices and actors suitable for studying cultural facets of anthropogenic Earth system change, especially regarding deeper, non-materialistic motivations that ask about humans' self-understanding in the Anthropocene epoch. We sketch a modelling landscape and outline some research primers, encompassing the following elements: (i) extensions of existing Earth system models by quantitative relationships between religious practices and biophysical processes, building on databases that allow for (mathematical) formalisation of such knowledge; (ii) design of new model types that specifically represent religious morals, actors and activities as part of co-evolutionary human–environment dynamics; and (iii) identification of research questions of humanitarian relevance that are underrepresented in purely economic–technocratic modelling and scenario paradigms. While this analysis is by necessity heuristic and semi-cohesive, we hope that it will act as a stimulus for further interdisciplinary and systematic research on the immaterial dimension of humanity's imprint on the Earth system, both qualitatively and quantitatively.
  • Item
    Estimating global cropland production from 1961 to 2010
    (München : European Geopyhsical Union, 2017) Han, Pengfei; Zeng, Ning; Zhao, Fang; Lin, Xiaohui
    Global cropland net primary production (NPP) has tripled over the last 50 years, contributing 17–45 % to the increase in global atmospheric CO2 seasonal amplitude. Although many regional-scale comparisons have been made between statistical data and modeling results, long-term national comparisons across global croplands are scarce due to the lack of detailed spatiotemporal management data. Here, we conducted a simulation study of global cropland NPP from 1961 to 2010 using a process-based model called Vegetation–Global Atmosphere–Soil (VEGAS) and compared the results with Food and Agriculture Organization of the United Nations (FAO) statistical data on both continental and country scales. According to the FAO data, the global cropland NPP was 1.3, 1.8, 2.2, 2.6, 3.0, and 3.6 PgC yr−1 in the 1960s, 1970s, 1980s, 1990s, 2000s, and 2010s, respectively. The VEGAS model captured these major trends on global and continental scales. The NPP increased most notably in the US Midwest, western Europe, and the North China Plain and increased modestly in Africa and Oceania. However, significant biases remained in some regions such as Africa and Oceania, especially in temporal evolution. This finding is not surprising as VEGAS is the first global carbon cycle model with full parameterization representing the Green Revolution. To improve model performance for different major regions, we modified the default values of management intensity associated with the agricultural Green Revolution differences across various regions to better match the FAO statistical data at the continental level and for selected countries. Across all the selected countries, the updated results reduced the RMSE from 19.0 to 10.5 TgC yr−1 (∼  45 % decrease). The results suggest that these regional differences in model parameterization are due to differences in socioeconomic development. To better explain the past changes and predict the future trends, it is important to calibrate key parameters on regional scales and develop data sets for land management history.
  • Item
    Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain
    (München : European Geopyhsical Union, 2016) Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.
    Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial–riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous–riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20% in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin, independent of the SRES scenario. The export of carbon to the atmosphere increases as well, with an average of about 30%. In contrast, changes in future export of organic carbon to the Atlantic Ocean depend on the SRES scenario and are projected to either decrease by about 8.9% (SRES A1B) or increase by about 9.1% (SRES A2). Such changes in the terrigenous–riverine system could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean. Changes in riverine carbon could lead to a shift in the riverine nutrient supply and pH, while changes in the exported carbon to the ocean lead to changes in the supply of organic material that acts as a food source in the Atlantic. On larger scales the increased outgassing of CO2 could turn the Amazon basin from a sink of carbon to a considerable source. Therefore, we propose that the coupling of terrestrial and riverine carbon budgets should be included in subsequent analysis of the future regional carbon budget.
  • Item
    Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming
    (München : European Geopyhsical Union, 2017) Schewe, Jacob; Levermann, Anders
    Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300% over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic–thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.
  • Item
    Sustainable use of renewable resources in a stylized social–ecological network model under heterogeneous resource distribution
    (München : European Geopyhsical Union, 2017) Barfuss, Wolfram; Donges, Jonathan F.; Wiedermann, Marc; Lucht, Wolfgang
    Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social–ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models
  • Item
    Analytically tractable climate–carbon cycle feedbacks under 21st century anthropogenic forcing
    (München : European Geopyhsical Union, 2018) Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will
    Changes to climate–carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate–carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate–carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate–carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate–carbon feedback; and concentration–carbon feedbacks may be more sensitive to future climate change than climate–carbon feedbacks. Simple models such as that developed here also provide "workbenches" for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.
  • Item
    Delaying future sea-level rise by storing water in Antarctica
    (München : European Geopyhsical Union, 2016) Frieler, K.; Mengel, M.; Levermann, A.
    Even if greenhouse gas emissions were stopped today, sea level would continue to rise for centuries, with the long-term sea-level commitment of a 2 °C warmer world significantly exceeding 2 m. In view of the potential implications for coastal populations and ecosystems worldwide, we investigate, from an ice-dynamic perspective, the possibility of delaying sea-level rise by pumping ocean water onto the surface of the Antarctic ice sheet. We find that due to wave propagation ice is discharged much faster back into the ocean than would be expected from a pure advection with surface velocities. The delay time depends strongly on the distance from the coastline at which the additional mass is placed and less strongly on the rate of sea-level rise that is mitigated. A millennium-scale storage of at least 80 % of the additional ice requires placing it at a distance of at least 700 km from the coastline. The pumping energy required to elevate the potential energy of ocean water to mitigate the currently observed 3 mm yr−1 will exceed 7 % of the current global primary energy supply. At the same time, the approach offers a comprehensive protection for entire coastlines particularly including regions that cannot be protected by dikes.
  • Item
    Changes in crop yields and their variability at different levels of global warming
    (München : European Geopyhsical Union, 2018) Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja
    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.
  • Item
    Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal
    (München : European Geopyhsical Union, 2016) Heck, Vera; Donges, Jonathan F.; Lucht, Wolfgang
    The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2°C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.
  • Item
    A network-based detection scheme for the jet stream core
    (München : European Geopyhsical Union, 2017) Molnos, Sonja; Mamdouh, Tarek; Petri, Stefan; Nocke, Thomas; Weinkauf, Tino; Coumou, Dim
    The polar and subtropical jet streams are strong upper-level winds with a crucial influence on weather throughout the Northern Hemisphere midlatitudes. In particular, the polar jet is located between cold arctic air to the north and warmer subtropical air to the south. Strongly meandering states therefore often lead to extreme surface weather. Some algorithms exist which can detect the 2-D (latitude and longitude) jets’ core around the hemisphere, but all of them use a minimal threshold to determine the subtropical and polar jet stream. This is particularly problematic for the polar jet stream, whose wind velocities can change rapidly from very weak to very high values and vice versa. We develop a network-based scheme using Dijkstra’s shortest-path algorithm to detect the polar and subtropical jet stream core. This algorithm not only considers the commonly used wind strength for core detection but also takes wind direction and climatological latitudinal position into account. Furthermore, it distinguishes between polar and subtropical jet, and between separate and merged jet states. The parameter values of the detection scheme are optimized using simulated annealing and a skill function that accounts for the zonal-mean jet stream position (Rikus, 2015). After the successful optimization process, we apply our scheme to reanalysis data covering 1979–2015 and calculate seasonal-mean probabilistic maps and trends in wind strength and position of jet streams. We present longitudinally defined probability distributions of the positions for both jets for all on the Northern Hemisphere seasons. This shows that winter is characterized by two well-separated jets over Europe and Asia (ca. 20Wto 140 E). In contrast, summer normally has a single merged jet over the western hemisphere but can have both merged and separated jet states in the eastern hemisphere. With this algorithm it is possible to investigate the position of the jets’ cores around the hemisphere and it is therefore very suitable to analyze jet stream patterns in observations and models, enabling more advanced model-validation.