Search Results

Now showing 1 - 10 of 341
  • Item
    A Bayesian approach to parameter identification in gas networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Hajian, Soheil; Hintermüller, Michael; Schillings, Claudia; Strogies, Nikolai
    The inverse problem of identifying the friction coefficient in an isothermal semilinear Euler system is considered. Adopting a Bayesian approach, the goal is to identify the distribution of the quantity of interest based on a finite number of noisy measurements of the pressure at the boundaries of the domain. First well-posedness of the underlying non-linear PDE system is shown using semigroup theory, and then Lipschitz continuity of the solution operator with respect to the friction coefficient is established. Based on the Lipschitz property, well-posedness of the resulting Bayesian inverse problem for the identification of the friction coefficient is inferred. Numerical tests for scalar and distributed parameters are performed to validate the theoretical results.
  • Item
    A Redlich-Kister type free energy model for Li-intercalation compounds with variable lattice occupation numbers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Landstorfer, Manuel
    One of the central quantities of a lithium ion intercalation compound is the open circuit potential, the voltage a battery material delivers in thermodynamic equilibrium. This voltage is related to the chemical potential of lithium in the insertion material and in general a non-linear function of the mole fraction of intercalated lithium. Experimental data shows further that it is specific for various materials. The open circuit voltage is a central ingredient for mathematical models of whole battery cells, which are used to investigate and simulate the charge and discharge behavior and to interpret experimental data on non-equilibrium processes. However, since no overall predictive theoretical method presently exists for the open circuit voltage, it is commonly fitted to experimental data. Simple polynomial fitting approaches are widely used, but they lack any thermodynamic interpretation. More recently systematically and thermodynamically motivated approaches are used to model the open circuit potential. We provide here an explicit free energy density which accounts for variable occupation numbers of Li on the intercalation lattice as well as RedlichKister-type enthalpy contributions. The derived chemical potential is validated by experimental data of Liy(Ni1/3Mn1/3Co1/3)O2 and we show that only two parameters are sufficient to obtain an overall agreement of the non-linear open circuit potential within the experimental error.
  • Item
    From nonlinear to linear elasticity in a coupled rate-dependent/independent system for brittle delamination
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Rossi, Riccarda; Thomas, Marita
    We revisit the weak, energetic-type existence results obtained in [RT15] for a system for rateindependent, brittle delamination between two visco-elastic, physically nonlinear bulk materials and explain how to rigorously extend such results to the case of visco-elastic, linearly elastic bulk materials. Our approximation result is essentially based on deducing the MOSCO-convergence of the functionals involved in the energetic formulation of the system. We apply this approximation result in two different situations at small strains: Firstly, to pass from a nonlinearly elastic to a linearly elastic, brittle model on the time-continuous level, and secondly, to pass from a time-discrete to a time-continuous model using an adhesive contact approximation of the brittle model, in combination with a vanishing, super-quadratic regularization of the bulk energy. The latter approach is beneficial if the model also accounts for the evolution of temperature.
  • Item
    The space of bounded variation with infinite-dimensional codomain
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Heida, Martin; Patterson, Robert I.A.; Renger, D.R. Michiel
    We study functions of bounded variation with values in a Banach or in a metric space. We provide several equivalent notions of variations and provide the notion of a time derivative in this abstract setting. We study four distinct topologies on the space of bounded variations and provide some insight into the structure of these topologies. In particular, we study the meaning of convergence, duality and regularity for these topologies and provide some useful compactness criteria, also related to the classical Aubin-Lions theorem. We finally provide some useful applications to stochastic processes.
  • Item
    Chirped photonic crystal for spatially filtered optical feedback to a broad-area laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Brée, Carsten; Gailevicius, Darius; Purlys, Vytautas; Werner, Guillermo Garre; Staliunas, Kestutis; Rathsfeld, Andreas; Schmidt, Gunther; Radziunas, Mindaugas
    We derive and analyze an efficient model for reinjection of spatially filtered optical feedback from an external resonator to a broad area, edge emitting semiconductor laser diode. Spatial filtering is achieved by a chirped photonic crystal, with variable periodicity along the optical axis and negligible resonant backscattering. The optimal chirp is obtained from a genetic algorithm, which yields solutions that are robust against perturbations. Extensive numerical simulations of the composite system with our optoelectronic solver indicate that spatially filtered reinjection enhances lower-order transversal optical modes in the laser diode and, consequently, improves the spatial beam quality.
  • Item
    Large deviations of specific empirical fluxes of independent Markov chains, with implications for Macroscopic Fluctuation Theory
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Renger, D.R. Michiel
    We consider a system of independent particles on a finite state space, and prove a dynamic large-deviation principle for the empirical measure-empirical flux pair, taking the specific fluxes rather than net fluxes into account. We prove the large deviations under deterministic initial conditions, and under random initial conditions satisfying a large-deviation principle. We then show how to use this result to generalise a number of principles from Macroscopic Fluctuation Theory to the finite-space setting.
  • Item
    Optimal Entropy-Transport problems and a new Hellinger-Kantorovich distance between positive measures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Liero, Matthias; Mielke, Alexander; Savaré, Giuseppe
    We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. They arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a couple of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, that quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger-Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger-Kakutani and Kantorovich-Wasserstein distances.
  • Item
    A hybrid FETI-DP method for non-smooth random partial differential equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Eigel, Martin; Gruhlke, Robert
    A domain decomposition approach exploiting the localization of random parameters in highdimensional random PDEs is presented. For high efficiency, surrogate models in multi-element representations are computed locally when possible. This makes use of a stochastic Galerkin FETI-DP formulation of the underlying problem with localized representations of involved input random fields. The local parameter space associated to a subdomain is explored by a subdivision into regions where the parametric surrogate accuracy can be trusted and where instead Monte Carlo sampling has to be employed. A heuristic adaptive algorithm carries out a problemdependent hp refinement in a stochastic multi-element sense, enlarging the trusted surrogate region in local parametric space as far as possible. This results in an efficient global parameter to solution sampling scheme making use of local parametric smoothness exploration in the involved surrogate construction. Adequately structured problems for this scheme occur naturally when uncertainties are defined on sub-domains, e.g. in a multi-physics setting, or when the Karhunen-Loéve expansion of a random field can be localized. The efficiency of this hybrid technique is demonstrated with numerical benchmark problems illustrating the identification of trusted (possibly higher order) surrogate regions and non-trusted sampling regions.
  • Item
    Discretisation and error analysis for a mathematical model of milling processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Hömberg, Dietmar; Rott, Oliver; Sturm, Kevin
    We investigate a mathematical model for milling where the cutting tool dynamics is considered together with an elastic workpiece model. Both are coupled by the cutting forces consisting of two dynamic components representing vibrations of the tool and of the workpiece, respectively, at the present and previous tooth periods. We develop a numerical solution algorithm and derive error estimates both for the semi-discrete and the fully discrete numerical scheme. Numerical computations in the last section support the analytically derived error estimates.
  • Item
    Constrained evolution for a quasilinear parabolic equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In the present contribution, a feedback control law is studied for a quasilinear parabolic equation. First, we prove the well-posedness and some regularity results for the CauchyNeumann problem for this equation, modified by adding an extra term which is a multiple of the subdifferential of the distance function from a closed convex set K of L2 (Omega). Then, we consider convex sets of obstacle or double-obstacle type, and we can act on the factor of the feedback control in order to be able to reach the convex set within a finite time, by proving rigorously this property.