Search Results

Now showing 1 - 10 of 35
  • Item
    Giant faraday rotation through ultra-small Fe0n clusters in superparamagnetic FeO-SiO2 vitreous films
    (Hoboken : Wiley, 2017) Nakatsuka, Yuko; Pollok, Kilian; Wieduwilt, Torsten; Langenhorst, Falko; Schmidt, Markus A.; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa; Wondraczek, Lothar
    Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass‐based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of xFeO·(100 − x)SiO2, unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.
  • Item
    Germania and alumina dopant diffusion and viscous flow effects at preparation of doped optical fibers
    (Ostrava : VSB - Technical University of Ostrava and University of Zilina Faculty of Electrical Engineering, 2017) Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Unger, Sonja; Schwuchow, Anka; Elsmann, Tino; Dellith, Jan; Aichele, Claudia; Fatobene Ando, Ron; Bartelt, Hartmut
    We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT) technique). The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.
  • Item
    Electric current-driven spectral tunability of surface plasmon polaritons in gold coated tapered fibers
    (College Park : American Institute of Physics, 2018) Lühder, Tilman; Wieduwilt, Torsten; Schneidewind, Henrik; Schmidt, Markus A.
    Here we introduce the concept of electrically tuning surface plasmon polaritons using current-driven heat dissipation, allowing controlling plasmonic properties via a straightforward-to-access quantity. The key idea is based on an electrical current flowing through the plasmonic layer, changing plasmon dispersion and phase-matching condition via a temperature-imposed modification of the refractive index of one of the dielectric media involved. This scheme was experimentally demonstrated on the example of an electrically connected plasmonic fiber taper that has sensitivities >50000 nm/RIU. By applying a current, dissipative heat generated inside metal film heats the surrounding liquid, reducing its refractive index correspondingly and thus modifying the phase-matching condition to the fundamental taper mode. We observed spectral shifts of the plasmonic resonance up to 300 nm towards shorter wavelength by an electrical power of ≤ 80 mW, clearly showing that our concept is important for applications that demand precise real-time and external control on plasmonic dispersion and resonance wavelengths.
  • Item
    Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool
    (London : BioMed Central, 2016) Bocklitz, Thomas W.; Salah, Firas Subhi; Vogler, Nadine; Heuke, Sandro; Chernavskaia, Olga; Schmidt, Carsten; Waldner, Maximilian J.; Greten, Florian R.; Bräuer, Rolf; Schmitt, Michael; Stallmach, Andreas; Petersen, Iver; Popp, Jürgen
    Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making.
  • Item
    Curcuminoid–BF2 complexes: Synthesis, fluorescence and optimization of BF2 group cleavage
    (Frankfurt a.M. : Beilstein-Institut, 2017) Weiß, Henning; Reichel, Jeannine; Görls, Helmar; Schneider, Kilian R.A.; Micheel, Mathias; Pröhl, Michael; Gottschaldt, Michael; Dietzek, Benjamin; Weigand, Wolfgang
    Eight difluoroboron complexes of curcumin derivatives carrying alkyne groups containing substituents have been synthesized following an optimised reaction pathway. The complexes were received in yields up to 98% and high purities. Their properties as fluorescent dyes have been investigated. Furthermore, a strategy for the hydrolysis of the BF2 group has been established using aqueous methanol and sodium hydroxide or triethylamine.
  • Item
    Influence of Sterilization and Preservation Procedures on the Integrity of Serum Protein-Coated Magnetic Nanoparticles
    (Basel : MDPI, 2017) Dutz, Silvio; Wojahn, Stephanie; Gräfe, Christine; Weidner, Andreas; Clement, Joachim H.
    Protein-coated magnetic nanoparticles are promising candidates for various medical applications. Prior to their application into a biological system, one has to guarantee that the particle dispersions are free from pathogens or any other microbiologic contamination. Furthermore, to find entrance into clinical routine, the nanoparticle dispersions have to be storable for several months. In this study, we tested several procedures for sterilization and preservation of nanoparticle containing liquids on their influence on the integrity of the protein coating on the surface of these particles. For this, samples were treated by freezing, autoclaving, lyophilization, and ultraviolet (UV) irradiation, and characterized by means of dynamic light scattering, determination of surface potential, and gel electrophoresis afterwards. We found that the UV sterilization followed by lyophilization under the addition of polyethylene glycol are the most promising procedures for the preparation of sterilized long-term durable protein-coated magnetic nanoparticles. Ongoing work is focused on the optimization of used protocols for UV sterilization and lyophilization for further improvement of the storage time.
  • Item
    Hybrid soliton dynamics in liquid-core fibres
    (Berlin : Nature Pulishing, 2017) Chemnitz, Mario; Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Kobelke, Jens; Limpert, Jens; Tünnermann, Andreas; Schmidt, Markus A.
    The discovery of optical solitons being understood as temporally and spectrally stationary optical states has enabled numerous innovations among which, most notably, supercontinuum light sources have become widely used in both fundamental and applied sciences. Here, we report on experimental evidence for dynamics of hybrid solitons—a new type of solitary wave, which emerges as a result of a strong non-instantaneous nonlinear response in CS2-filled liquid-core optical fibres. Octave-spanning supercontinua in the mid-infrared region are observed when pumping the hybrid waveguide with a 460 fs laser (1.95 μm) in the anomalous dispersion regime at nanojoule-level pulse energies. A detailed numerical analysis well correlated with the experiment uncovers clear indicators of emerging hybrid solitons, revealing their impact on the bandwidth, onset energy and noise characteristics of the supercontinua. Our study highlights liquid-core fibres as a promising platform for fundamental optics and applications towards novel coherent and reconfigurable light sources.
  • Item
    Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines
    (College Park : American Institute of Physics, 2018) Li, Jiawen; Ebendorff-Heidepriem, Heike; Gibson, Brant C.; Greentree, Andrew D.; Hutchinson, Mark R.; Jia, Peipei; Kostecki, Roman; Liu, Guozhen; Orth, Antony; Ploschner, Martin; Schartner, Erik P.; Warren-Smith, Stephen C.; Zhang, Kaixin; Tsiminis, Georgios; Goldys, Ewa
    The probing of physiological processes in living organisms is a grand challenge that requires bespoke analytical tools. Optical fiber probes offer a minimally invasive approach to report physiological signals from specific locations inside the body. This perspective article discusses a wide range of such fiber probes developed at the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics. Our fiber platforms use a range of sensing modalities, including embedded nanodiamonds for magnetometry, interferometric fiber cavities for refractive index sensing, and tailored metal coatings for surface plasmon resonance sensing. Other fiber probes exploit molecularly sensitive Raman scattering or fluorescence where optical fibers have been combined with chemical and immunosensors. Fiber imaging probes based on interferometry and computational imaging are also discussed as emerging in vivo diagnostic devices. We provide examples to illustrate how the convergence of multiple scientific disciplines generates opportunities for the fiber probes to address key challenges in real-time in vivo diagnostics. These future fiber probes will enable the asking and answering of scientific questions that were never possible before.
  • Item
    Gold-reinforced silver nanoprisms on optical fiber tapers - A new base for high precision sensing
    (New York : American Institute of Physics, 2016) Wieduwilt, Torsten; Zeisberger, M.; Thiele, M.; Doherty, B.; Chemnitz, M.; Csaki, A.; Fritzsche, W.; Schmidt, M.A.
    Due to their unique optical properties, metallic nanoparticles offer a great potential for important applications such as disease diagnostics, demanding highly integrated device solutions with large refractive index sensitivity. Here we introduce a new type of monolithic localized surface plasmon resonance (LSPR) waveguide sensor based on the combination of an adiabatic optical fiber taper and a high-density ensemble of immobilized gold-reinforced silver nanoprisms, showing sensitivities up to 900 nm/RIU. This result represents the highest value reported so far for a fiber optic sensor using the LSPR effect and exceeds the corresponding value of the bulk solution by a factor of two. The plasmonic resonance is efficiently excited via the evanescent field of the propagating taper mode, leading to pronounced transmission dips (−20 dB). The particle density is so high (approx. 210 particle/μm2) that neighboring particles are able to interact, boosting the sensitivity, as confirmed by qualitative infinite element simulations. We additionally introduce a qualitative model explaining the interaction of plasmon resonance and taper mode on the basis of light extinction, allowing extracting key parameters of the plasmonic taper (e.g., modal attenuation). Due to the monolithic design and the extremely high sensitivity we expect our finding to be relevant in fields such as biomedicine, disease diagnostics, and molecular sensing.
  • Item
    Nanoboomerang-based inverse metasurfaces - a promising path towards ultrathin photonic devices for transmission operation
    (College Park : American Institute of Physics, 2017) Zeisberger, Matthias; Schneidewind, Henrik; Hübner, Uwe; Popp, Jürgen; Schmidt, Markus A.
    Metasurfaces have revolutionized photonics due to their ability to shape phase fronts as requested and to tune beam directionality using nanoscale metallic or dielectric scatterers. Here we reveal inverse metasurfaces showing superior properties compared to their positive counterparts if transmission mode operation is considered. The key advantage of such slot-type metasurfaces is the strong reduction of light in the parallel-polarization state, making the crossed-polarization, being essential for metasurface operation, dominant and highly visible. In the experiment, we show an up to four times improvement in polarization extinction for the individual metasurface element geometry consisting of deep subwavelength nanoboomerangs with feature sizes of the order of 100 nm. As confirmed by simulations, strong plasmonic hybridization yields two spectrally separated plasmonic resonances, ultimately allowing for the desired phase and scattering engineering in transmission. Due to the design flexibility of inverse metasurfaces, a large number of highly integrated ultra-flat photonic elements can be envisioned, examples of which include monolithic lenses for telecommunications and spectroscopy, beam shaper or generator for particle trapping or acceleration or sophisticated polarization control for microscopy.