Search Results

Now showing 1 - 3 of 3
  • Item
    Roles of hydrogenation, annealing and field in the structure and magnetic entropy change of Tb-based bulk metallic glasses
    (New York : American Institute of Physics, 2013) Luo, Qiang; Schwarz, Björn; Mattern, Norbert; Shen, Jun; Eckert, Jürgen
    The reduction of open-volume regions in Tb-based metallic glass (MG) by annealing and hydrogen charging was found to rearrange the atomic structure and tune the magnetic behaviors. After crystallization, the magnetic structure and magnetic entropy change (MEC) alters due to the structural transformation, and a plateau-like-MEC behavior can be obtained. The hydrogen concentration after charging at 1mA/cm2 for 576 h reaches as high as 3290 w-ppm. The magnetization behavior and the MEC change due to the modification of the exchange interaction and the random magnetic anisotropy (RMA) upon hydrogenation. At low temperatures, irreversible positive MEC was obtained, which is related to the internal entropy production. The RMA-to-exchange ratio acts as a switch to control the irreversible entropy production channel and the reversible entropy transfer channel. The field dependence of the MEC is discussed in term of the competition among Zeeman energy, exchange interaction and RMA.
  • Item
    The Bain library: A Cu-Au buffer template for a continuous variation of lattice parameters in epitaxial films
    (New York : American Institute of Physics, 2014) Kauffmann-Weiss, S.; Hamann, S.; Reichel, L.; Siegel, A.; Alexandrakis, V.; Heller, R.; Schultz, L.; Ludwig, A.; Fähler, S.
    Smallest variations of the lattice parameter result in significant changes in material properties. Whereas in bulk, lattice parameters can only be changed by composition or temperature, coherent epitaxial growth of thin films on single crystals allows adjusting the lattice parameters independently. Up to now only discrete values were accessible by using different buffer or substrate materials. We realize a lateral variation of in-plane lattice parameters using combinatorial film deposition of epitaxial Cu-Au on a 4-in. Si wafer. This template gives the possibility to adjust the in-plane lattice parameter over a wide range from 0.365 nm up to 0.382 nm.
  • Item
    The impact of surface morphology on the magnetovolume transition in magnetocaloric LaFe11.8Si1.2
    (New York : American Institute of Physics, 2016) Waske, A.; Lovell, E.; Funk, A.; Sellschopp, K.; Rack, A.; Giebeler, L.; Gostin, P.F.; Fähler, S.; Cohen, L.F.
    First order magnetocaloric materials reach high entropy changes but at the same time exhibit hysteresis losses which depend on the sample’s microstructure. We use non-destructive 3D X-ray microtomography to understand the role of surface morphology for the magnetovolume transition of LaFe11.8Si1.2. The technique provides unique information on the spatial distribution of the volume change at the transition and its relationship with the surface morphology. Complementary Hall probe imaging confirms that on a morphologically complex surface minimization of strain energy dominates. Our findings sketch the way for a tailored surface morphology with low hysteresis without changing the underlying phase transition.