Search Results

Now showing 1 - 2 of 2
  • Item
    High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback
    (Washington, DC : Optical Society of America, 2014) Wienold, M.; Röben, B.; Schrottke, L.; Sharma, R.; Tahraoui, A.; Biermann, K.; Grahn, H.T.
    Currently, different competing waveguide and resonator concepts exist for terahertz quantum-cascade lasers (THz QCLs). We examine the continuous-wave (cw) performance of THz QCLs with single-plasmon (SP) and metal-metal (MM) waveguides fabricated from the same wafer. While SP QCLs are superior in terms of output power, the maximum operating temperature for MM QCLs is typically much higher. For SP QCLs, we observed cw operation up to 73 K as compared to 129 K for narrow (≤ 15 μm) MM QCLs. In the latter case, single-mode operation and a narrow beam profile were achieved by applying third-order distributed-feedback gratings and contact pads which are optically insulated from the intended resonators. We present a quantitative analytic model for the beam profile, which is based on experimentally accessible parameters.
  • Item
    Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers
    (Washington, DC : Optical Society of America, 2012) Wienold, M.; Tahraoui, A.; Schrottke, L.; Sharma, R.; Lü, X.; Biermann, K.; Hey, R.; Grahn, H.T.
    We report on terahertz quantum-cascade lasers (THz QCLs) based on first-order lateral distributed-feedback (lDFB) gratings, which exhibit continuous-wave operation, high output powers (>8 mW), and single-mode emission at 3.3–3.4 THz. A general method is presented to determine the coupling coefficients of lateral gratings in terms of the coupled-mode theory, which demonstrates that large coupling strengths are obtained in the presence of corrugated metal layers. The experimental spectra are in agreement with simulations of the lDFB cavities, which take into account the reflective end facets.