Search Results

Now showing 1 - 10 of 146
  • Item
    Formation mechanism for stable hybrid clusters of proteins and nanoparticles
    (Washington D.C. : American Chemical Society, 2015) Moerz, Sebastian T.; Kraegeloh, Annette; Chanana, Munish; Kraus, Tobias
    Citrate-stabilized gold nanoparticles (AuNP) agglomerate in the presence of hemoglobin (Hb) at acidic pH. The extent of agglomeration strongly depends on the concentration ratio [Hb]/[AuNP]. Negligible agglomeration occurs at very low and very high [Hb]/[AuNP]. Full agglomeration and precipitation occur at [Hb]/[AuNP] corresponding to an Hb monolayer on the AuNP. Ratios above and below this value lead to the formation of an unexpected phase: stable, microscopic AuNP–Hb agglomerates. We investigated the kinetics of agglomeration with dynamic light scattering and the adsorption kinetics of Hb on planar gold with surface-acoustic wave-phase measurements. Comparing agglomeration and adsorption kinetics leads to an explanation of the complex behavior of this nanoparticle–protein mixture. Agglomeration is initiated either when Hb bridges AuNP or when the electrostatic repulsion between AuNP is neutralized by Hb. It is terminated when Hb has been depleted or when Hb forms multilayers on the agglomerates that stabilize microscopic clusters indefinitely.
  • Item
    Surviving the surf: The tribomechanical properties of the periostracum of Mytilus sp
    (Amsterdam : Elsevier, 2014) Wählisch, Felix C.; Peter, Nicolas J.; Torrents Abad, Oscar; Oliveira, Mariana V.G.; Schneider, Andreas S.; Schmahl, Wolfgang; Griesshaber, Erika; Bennewitz, Roland
    We investigated the friction and wear behavior as well as the mechanical properties of the periostracum of Mytilus sp. Tribological properties were determined with a reciprocal sliding microtribometer, while mechanical characterization was performed using a nanoindenter. Measurements were performed in dry and wet conditions. On the dry periostracum we found a low friction coefficient of 0.078 ± 0.007 on the young parts and a higher one of 0.63 ± 0.02 on the old parts of the shell. Under wet, saline, conditions we only observed one average coefficient of friction of 0.37 ± 0.01. Microscopic ex situ analysis indicated that dry periostracum wore rather rapidly by plowing and fatigue, while it exhibited a high wear resistance when immersed in salt water. The Young’s modulus and hardness of the periostracum were also investigated in both dry and wet conditions. Under dry conditions the Young’s modulus of the periostracum was 8 ± 3 GPa, while under wet conditions it was 0.21 ± 0.05 GPa. The hardness of dry periostracum samples was 353 ± 127 MPa, whereas the hardness of wet samples was 5 ± 2 MPa. It was found that, in the wet state, viscous behavior plays a significant role in the mechanical response of the periostracum. Our results strongly indicate that the periostracum can provide an important contribution to the overall wear resistance of Mytilus sp. shell.
  • Item
    Analysis of fatty acids and triacylglycerides by Pd nanoparticle-assisted laser desorption/ionization mass spectrometry
    (Cambridge : Royal Society of Chemistry, 2015) Silina, Yuliya E.; Fink-Straube, Claudia; Hayen, Heiko; Volmer, Dietrich A.
    In this study, we propose a simple and rapid technique for characterization of free fatty acids and triacylglycerides (TAG) based on palladium nanoparticular (Pd-NP) surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS). The implemented Pd-NP material allowed detection of free fatty acids and TAGs exclusively as [M + K]+ ions in positive ion mode. Under negative ionization conditions, unusual trimetric structures were generated for free fatty acids, while TAGs underwent irreproducible degradation reactions. Importantly, the mass spectra obtained from Pd-NP targets in positive ion mode were very clean without interferences from matrix-derived ions in the low m/z range and readily enabled the detection of intact TAGs in vegetable oils without major fragmentation reactions as compared to conventional MALDI-MS, requiring only a minimal amount of sample preparation.
  • Item
    Toward light‐regulated living biomaterials
    (Hoboken, NJ : Wiley, 2018) Sankaran, Shrikrishnan; Zhao, Shifang; Muth, Christina; Paez, Julieta; Del Campo, Aránzazu
    Living materials are an emergent material class, infused with the productive,adaptive, and regenerative properties of living organisms. Property regulation in living materials requires encoding responsive units in the living components to allow external manipulation of their function. Here, an optoregulated Escherichia coli (E. coli)-based living biomaterial that can be externally addressed using light to interact with mammalian cells is demonstrated. This is achieved by using a photoactivatable inducer of gene expression and bacterial surface display technology to present an integrin-specific miniprotein on the outer membrane of an endotoxin-free E. coli strain. Hydrogel surfaces functionalized with the bacteria can expose cell adhesive molecules upon in situ light-activation, and trigger cell adhesion. Surface immobilized bacteria are able to deliver a fluorescent protein to the mammalian cells with which they are interacting, indicating the potential of such a bacterial material to deliver molecules to cells in a targeted manner.
  • Item
    Bifunctional hydrogels containing the laminin motif IKVAV promote neurogenesis
    (Amsterdam : Elsevier, 2017) Farrukh, Aleeza; Ortega, Felipe; Fan, Wenqiang; Marichal, Nicolás; Paez, Julieta I.; Berninger, Benedikt; del Campo, Aránzazu; Salierno, Marcelo J.
    Engineering of biomaterials with specific biological properties has gained momentum as a means to control stem cell behavior. Here, we address the effect of bifunctionalized hydrogels comprising polylysine (PL) and a 19-mer peptide containing the laminin motif IKVAV (IKVAV) on embryonic and adult neuronal progenitor cells under different stiffness regimes. Neuronal differentiation of embryonic and adult neural progenitors was accelerated by adjusting the gel stiffness to 2 kPa and 20 kPa, respectively.While gels containing IKVAV or PL alone failed to support long-term cell adhesion, in bifunctional gels, IKVAV synergized with PL to promote differentiation and formation of focal adhesions containing b1-integrin in embryonic cortical neurons. Furthermore, in adult neural stem cell culture, bifunctionalized gels promoted neurogenesis via the expansion of neurogenic clones. These data highlight the potential of synthetic matrices to steer stem and progenitor cell behavior via defined mechano-adhesive properties.
  • Item
    On the behaviour of nanoparticles in oil-in-water emulsions with different surfactants
    (Cambridge : Royal Society of Chemistry, 2014) Lacava, Johann; Ouali, Ahmed-Amine; Raillard, Brice; Kraus, Tobias
    The distribution of narrowly dispersed gold nanoparticles in hexane-in-water emulsions was studied for different surfactants. Good surfactants such as SDS and Triton X-100 block the oil-water interfaces and confine particles in the droplet. Other surfactants (Tween 85 and Span 20) form synergistic mixtures with the nanoparticles at the interfaces that lower the surface tension more than any component. Supraparticles with fully defined particle distribution form in the droplets only for surfactants that block the interface. Other surfactants promote the formation of fcc agglomerates. Nanoparticles in emulsions behave markedly different from microparticles-their structure formation is governed by free energy minimization, while microparticles are dominated by kinetics.
  • Item
    Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Zeiger, Marco; Massuti-Ballester, Pau; Fleischmann, Simon; Formanek, Petr; Borchardt, Lars; Presser, Volker
    In this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion–sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li–S batteries, yielding 97–98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g−1 after 150 cycles) in long term cycle test and rate capability experiments.
  • Item
    Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells
    (London : Nature Publishing Group, 2015) Astanina, Ksenia; Koch, Marcus; Jüngst, Christian; Zumbusch, Andreas; Kiemer, Alexandra K.
    Intercellular communication is a fundamental process in the development and functioning of multicellular organisms. Recently, an essentially new type of intercellular communication, based on thin membrane channels between cells, has been reported. These structures, termed intercellular or tunnelling nanotubes (TNTs), permit the direct exchange of various components or signals (e.g., ions, proteins, or organelles) between non-adjacent cells at distances over 100 μm. Our studies revealed the presence of tunnelling nanotubes in microvascular endothelial cells (HMEC-1). The TNTs were studied with live cell imaging, environmental scanning electron microscopy (ESEM), and coherent anti-Stokes Raman scattering spectroscopy (CARS). Tunneling nanotubes showed marked persistence: the TNTs could connect cells over long distances (up to 150 μm) for several hours. Several cellular organelles were present in TNTs, such as lysosomes and mitochondria. Moreover, we could identify lipid droplets as a novel type of cargo in the TNTs. Under angiogenic conditions (VEGF treatment) the number of lipid droplets increased significantly. Arachidonic acid application not only increased the number of lipid droplets but also tripled the extent of TNT formation. Taken together, our results provide the first demonstration of lipid droplets as a cargo of TNTs and thereby open a new field in intercellular communication research.
  • Item
    Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-SAM using a microfluidic SAW biosensor
    (Frankfurt am Main : Beilstein-Institut, 2014) Pohl, Anna; Weiss, Ingrid M.
    A microfluidic biosensor with surface acoustic wave technology was used in this study to monitor the interaction of calcium carbonate with standard carboxylate self-assembled monolayer sensor chips. Different fluids, with and without biomolecular components, were investigated. The pH-dependent surface interactions of two bio-inspired cationic peptides, AS8 and ES9, which are similar to an extracellular domain of the chitin synthase involved in mollusc shell formation, were also investigated in a biological buffer system. A range of experimental conditions are described that are suitable to study non-covalent molecular interactions in the presence of ionic substances, such as, mineral precursors below the solubility equilibrium. The peptide ES9, equal to the mollusc chitin synthase epitope, is less sensitive to changes in pH than its counterpart AS8 with a penta-lysine core, which lacks the flanking acidic residues. This study demonstrates the extraordinary potential of microfluidic surface acoustic wave biosensors to significantly expand our experimental capabilities for studying the principles underlying biomineralization in vitro.
  • Item
    Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017) Leistenschneider, Desirée; Jäckel, Nicolas; Hippauf, Felix; Presser, Volker; Borchardt, Lars
    A solvent-free synthesis of hierarchical porous carbons is conducted by a facile and fast mechanochemical reaction in a ball mill. By means of a mechanochemical ball-milling approach, we obtained titanium(IV) citrate-based polymers, which have been processed via high temperature chlorine treatment to hierarchical porous carbons with a high specific surface area of up to 1814 m2 g−1 and well-defined pore structures. The carbons are applied as electrode materials in electric double-layer capacitors showing high specific capacitances with 98 F g−1 in organic and 138 F g−1 in an ionic liquid electrolyte as well as good rate capabilities, maintaining 87% of the initial capacitance with 1 M TEA-BF4 in acetonitrile (ACN) and 81% at 10 A g−1 in EMIM-BF4.