Search Results

Now showing 1 - 3 of 3
  • Item
    The effect of gender in the publication patterns in mathematics
    (San Francisco, CA : Public Library of Science, 2016) Mihaljević-Brandt, Helena; Santamaría, Lucía; Tullney, Marco
    Despite the increasing number of women graduating in mathematics, a systemic gender imbalance persists and is signified by a pronounced gender gap in the distribution of active researchers and professors. Especially at the level of university faculty, women mathematicians continue being drastically underrepresented, decades after the first affirmative action measures have been put into place. A solid publication record is of paramount importance for securing permanent positions. Thus, the question arises whether the publication patterns of men and women mathematicians differ in a significant way. Making use of the zbMATH database, one of the most comprehensive metadata sources on mathematical publications, we analyze the scholarly output of ∼150,000 mathematicians from the past four decades whose gender we algorithmically inferred. We focus on development over time, collaboration through coautorships, presumed journal quality and distribution of research topics—factors known to have a strong impact on job perspectives. We report significant differences between genders which may put women at a disadvantage when pursuing an academic career in mathematics.
  • Item
    Heavy fermion properties of the Kondo Lattice model
    (London : Nature Publishing Group, 2013) Sykora, Steffen; Becker, Klaus W.
    We study the S = 1/2 Kondo lattice model which is widely used to describe heavy fermion behavior. In conventional treatments of the model the Kondo interaction is decoupled in favour of a hybridization of conduction and localized f electrons. However, such an approximation breaks the local gauge symmetry and implicates that the local f-occupation is no longer conserved. To avoid these problems, we use in this work an alternative approach to the model based on the Projective Renormalization Method (PRM). Thereby, within the conduction electron spectral function we identify the lattice Kondo resonance as an almost flat excitation near the Fermi surface which is composed of conduction electron creation operators combined with localized spin fluctuations. This leads to an alternative description of the Kondo resonance without having to resort to an artificial symmetry breaking.
  • Item
    Unconventional superconductivity and interaction induced Fermi surface reconstruction in the two-dimensional Edwards model
    (London : Nature Publishing Group, 2016) Cho, Dai-Ning; van den Brink, Jeroen; Fehske, Holger; Becker, Klaus W.; Sykora, Steffen
    We study the competition between unconventional superconducting pairing and charge density wave (CDW) formation for the two-dimensional Edwards Hamiltonian at half filling, a very general two-dimensional transport model in which fermionic charge carriers couple to a correlated background medium. Using the projective renormalization method we find that a strong renormalization of the original fermionic band causes a new hole-like Fermi surface to emerge near the center of the Brillouin zone, before it eventually gives rise to the formation of a charge density wave. On the new, disconnected parts of the Fermi surface superconductivity is induced with a sign-changing order parameter. We discuss these findings in the light of recent experiments on iron-based oxypnictide superconductors.