Search Results

Now showing 1 - 7 of 7
  • Item
    A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Barrenechea, Gabriel R.; John, Volker; Knobloch, Petr
    An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived which are supported by numerical studies. These studies demonstrate also the reduction of the spurious oscillations.
  • Item
    Error estimates in weighted Sobolev norms for finite element immersed interface methods
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Heltai, Luca; Rotundo, Nella
    When solving elliptic partial differential equations in a region containing immersed interfaces (possibly evolving in time), it is often desirable to approximate the problem using a uniform background discretisation, not aligned with the interface itself. Optimal convergence rates are possible if the discretisation scheme is enriched by allowing the discrete solution to have jumps aligned with the surface, at the cost of a higher complexity in the implementation. A much simpler way to reformulate immersed interface problems consists in replacing the interface by a singular force field that produces the desired interface conditions, as done in immersed boundary methods. These methods are known to have inferior convergence properties, depending on the global regularity of the solution across the interface, when compared to enriched methods. In this work we prove that this detrimental effect on the convergence properties of the approximate solution is only a local phenomenon, restricted to a small neighbourhood of the interface. In particular we show that optimal approximations can be constructed in a natural and inexpensive way, simply by reformulating the problem in a distributionally consistent way, and by resorting to weighted norms when computing the global error of the approximation.
  • Item
    Eigensolutions of the Wigner-Eisenbud problem for a cylindrical nanowire within finite volume method
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Racec, Paul N.; Schade, Stanley; Kaiser, Hans-Christoph
    We present a finite volume method for computing a representative range of eigenvalues and eigenvectors of the Schrödinger operator on a three dimensional cylindrically symmetric bounded domain with mixed boundary conditions. More specifically, we deal with a semiconductor nanowire which consists of a dominant host material and contains heterostructure features such as double-barriers or quantum dots. The three dimensional Schrödinger operator is reduced to a family of two dimensional Schrödinger operators distinguished by a centrifugal potential. Ultimately, we numerically treat them by means of a finite volume method. We consider a uniform, boundary conforming Delaunay mesh, which additionally conforms to the material interfaces. The 1/r singularity is eliminated by approximating r at the vertexes of the Voronoi boxes. We study how the anisotropy of the effective mass tensor acts on the uniform approximation of the first K eigenvalues and eigenvectors and their sequential arrangement. There exists an optimal uniform Delaunay discretization with matching anisotropy. This anisotropic discretization yields best accuracy also in the presence of a mildly varying scattering potential, shown exemplarily for a nanowire resonant tunneling diode. For potentials with 1/r singularity one retrieves the theoretically established first order convergence, while the second order convergence is recovered only on uniform grids with an anisotropy correction.
  • Item
    A posteriori error control for stationary coupled bulk-surface equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Eigel, Martin; Müller, Rüdiger
    We consider a system of two coupled elliptic equations, one defined on a bulk domain and the other one on the boundary surface. Problems of this kind of problem are relevant for applications in engineering, chemistry and in biology like e.g. biological signal transduction. For the a posteriori error control of the coupled system, a residual error estimator is derived which takes into account the approximation errors due to the finite element discretisation in space as well as the polyhedral approximation of the surface. An adaptive refinement algorithm controls the overall error. Numerical experiments illustrate the performance of the a posteriori error estimator and the proposed adaptive algorithm with several benchmark examples.
  • Item
    Stability of explicit Runge-Kutta methods for high order finite element approximation of linear parabolic equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Huang, Weizhang; Kamenski, Lennard; Lang, Jens
    We study the stability of explicit Runge-Kutta methods for high order Lagrangian finite element approximation of linear parabolic equations and establish bounds on the largest eigenvalue of the system matrix which determines the largest permissible time step. A bound expressed in terms of the ratio of the diagonal entries of the stiffness and mass matrices is shown to be tight within a small factor which depends only on the dimension and the choice of the reference element and basis functions but is independent of the mesh or the coefficients of the initial-boundary value problem under consideration. Another bound, which is less tight and expressed in terms of mesh geometry, depends only on the number of mesh elements and the alignment of the mesh with the diffusion matrix. The results provide an insight into how the interplay between the mesh geometry and the diffusion matrix affects the stability of explicit integration schemes when applied to a high order finite element approximation of linear parabolic equations on general nonuniform meshes.
  • Item
    Stability of explicit Runge-Kutta methods for finite element approximation of linear parabolic equations on anisotropic meshes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Huang, Weizhang; Kamenski, Lennard; Lang, Jens
    We study the stability of explicit Runge-Kutta integration schemes for the linear finite element approximation of linear parabolic equations. The derived bound on the largest permissible time step is tight for any mesh and any diffusion matrix within a factor of 2(d + 1), where d is the spatial dimension. Both full mass matrix and mass lumping are considered. The bound reveals that the stability condition is affected by two factors. The first one depends on the number of mesh elements and corresponds to the classic bound for the Laplace operator on a uniform mesh. The other factor reflects the effects of the interplay of the mesh geometry and the diffusion matrix. It is shown that it is not the mesh geometry itself but the mesh geometry in relation to the diffusion matrix that is crucial to the stability of explicit methods. When the mesh is uniform in the metric specified by the inverse of the diffusion matrix, the stability condition is comparable to the situation with the Laplace operator on a uniform mesh. Numerical results are presented to verify the theoretical findings.
  • Item
    Some analytical results for an algebraic flux correction scheme for a steady convection-diffusion equation in 1D
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Barrenechea, Gabriel R.; John, Volker; Knobloch, Petr
    Algebraic flux correction schemes are nonlinear discretizations of convection dominated problems. In this work, a scheme from this class is studied for a steady-state convection-diffusion equation in one dimension. It is proved that this scheme satisfies the discrete maximum principle. Also, as it is a nonlinear scheme, the solvability of the linear subproblems arising in a Picard iteration is studied, where positive and negative results are proved. Furthermore, the non-existence of solutions for the nonlinear scheme is proved by means of counterexamples. Therefore, a modification of the method, which ensures the existence of a solution, is proposed. A weak version of the discrete maximum principle is proved for this modified method.