Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part II: Radar investigations and modelling studies

2006, Serafimovich, A., Zülicke, Ch., Hoffmann, P., Peters, D., Dalin, P., Singer, W.

We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5–5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.

Loading...
Thumbnail Image
Item

Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007

2008, Belova, A., Kirkwood, S., Murtagh, D., Mitchell, N., Singer, W., Hocking, W.

A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE) at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976) do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005) that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration) using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.

Loading...
Thumbnail Image
Item

Tropospheric forcing of the boreal polar vortex splitting in January 2003

2010, Peters, D.H.W., Vargin, P., Gabriel, A., Tsvetkova, N., Yushkov, V.

e dynamical evolution of the relatively warm stratospheric winter season 2002–2003 in the Northern Hemisphere was studied and compared with the cold winter 2004–2005 based on NCEP-Reanalyses. Record low temperatures were observed in the lower and middle stratosphere over the Arctic region only at the beginning of the 2002–2003 winter. Six sudden stratospheric warming events, including the major warming event with a splitting of the polar vortex in mid-January 2003, have been identified. This led to a very high vacillation of the zonal mean circulation and a weakening of the stratospheric polar vortex over the whole winter season. An estimate of the mean chemical ozone destruction inside the polar vortex showed a total ozone loss of about 45 DU in winter 2002–2003; that is about 2.5 times smaller than in winter 2004–2005. Embedded in a winter with high wave activity, we found two subtropical Rossby wave trains in the troposphere before the major sudden stratospheric warming event in January 2003. These Rossby waves propagated north-eastwards and maintained two upper tropospheric anticyclones. At the same time, the amplification of an upward propagating planetary wave 2 in the upper troposphere and lower stratosphere was observed, which could be caused primarily by those two wave trains. Furthermore, two extratropical Rossby wave trains over the North Pacific Ocean and North America were identified a couple of days later, which contribute mainly to the vertical planetary wave activity flux just before and during the major warming event. It is shown that these different tropospheric forcing processes caused the major warming event and contributed to the splitting of the polar vortex.

Loading...
Thumbnail Image
Item

Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part I: Observations with collocated radars

2006, Hoffmann, P., Serafimovich, A., Peters, D., Dalin, P., Goldberg, R., Latteck, R.

During the {MaCWAVE} campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andøya Rocket Range (ARR) near Andenes and the Swedish Rocket Range (ESRANGE) near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHF radar in the upper troposphere/ lower stratosphere at Andenes (69.3° N, 16.0° E) and the ESRAD VHF radar near Kiruna (67.9° N, 21.9° E). Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24–26 January 2003 with dominant vertical wavelengths of about 4–5 km as well as with dominant observed periods of about 13–14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of ~200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of ~5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains.

Loading...
Thumbnail Image
Item

Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004

2008, Pancheva, D., Mukhtarov, P., Mitchell, N.J., Andonov, B., Merzlyakov, E., Singer, W., Murayama, Y., Kawamura, S., Xiong, J., Wan, W., Hocking, W., Fritts, D., Riggin, D., Meek, C., Manson, A.

The coupling of the dynamical regimes in the high- and low-latitude stratosphere and mesosphere during the major SSW in the Arctic winter of 2003/2004 has been studied. The UKMO zonal wind data were used to explore the latitudinal coupling in the stratosphere, while the coupling in the mesosphere was investigated by neutral wind measurements from eleven radars situated at high, high-middle and tropical latitudes. It was found that the inverse relationship between the variability of the zonal mean flows at high- and low-latitude stratosphere related to the SSW is produced by global-scale zonally symmetric waves. Their origin and other main features have been investigated in detail. Similar latitudinal dynamical coupling has been found for the mesosphere as well. Indirect evidence for the presence of zonally symmetric waves in the mesosphere has been found.