Search Results

Now showing 1 - 3 of 3
  • Item
    Floating zone growth of Bi2Sr2Ca2Cu3Oy superconductor
    (Basel : MDPI, 2016) Maljuk, Andrey; Lin, C.T.
    The crystal growth of high-temperature oxide superconductors has been hampered by the complexities of these materials and the lack of knowledge of corresponding phase diagrams. The most common crystal growth technique adopted for these materials is the so-called “Flux” method. This method, however, suffers from several drawbacks: (i) crystals are often crucible and flux contaminated; (ii) crystals are difficult to detach from solidified melt; and (iii) crystals are rather small. In most cases, these drawbacks can be overcome by the crucible-free floating zone method. Moreover, this technique is suitable for crystal growth of incongruently melting compounds, and has been thus successfully used to make large single crystals of Bi2Sr2Ca2Cu3Oy superconductor. In this review, the authors summarize the published and their own growth efforts as well as detailed characterization of as-grown and post-growth annealed samples. The optimal growth conditions that allowed one to obtain the large-size, almost single phase and homogeneous in composition Bi2Sr2Ca2Cu3Oy single crystals are presented. The effect of long lasting post-growth heat treatment on both crystal quality and superconducting properties has also been demonstrated.
  • Item
    Graphene-Like ZnO: A Mini Review
    (Basel : MDPI, 2016) Ta, Huy Q.; Zhao, Liang; Pohl, Darius; Pang, Jinbo; Trzebicka, Barbara; Rellinghaus, Bernd; Pribat, Didier; Gemming, Thomas; Liu, Zhongfan; Bachmatiuk, Alicja; Rümmeli, Mark H.
    The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing new properties but also paved the way for a new class of materials often referred to as two-dimensional (2D) materials. Beyond graphene, other 2D materials include h-BN, transition metal dichalcogenides (TMDs), silicene, and germanene, to name a few. All tend to have exciting physical and chemical properties which appear due to dimensionality effects and modulation of their band structure. A more recent member of the 2D family is graphene-like zinc oxide (g-ZnO) which also holds great promise as a future functional material. This review examines current progress in the synthesis and characterization of g-ZnO. In addition, an overview of works dealing with the properties of g-ZnO both in its pristine form and modified forms (e.g., nano-ribbon, doped material, etc.) is presented. Finally, discussions/studies on the potential applications of g-ZnO are reviewed and discussed.
  • Item
    Photophysics of BODIPY dyes as readily designable photosensitisers in light-driven proton reduction
    (Basel : MDPI, 2017) Dura, Laura; Wächtler, Maria; Kupfer, Stephan; Kübel, Joachim; Ahrens, Johannes; Höfler, Sebastian; Bröring, Martin; Dietzek, Benjamin; Beweries, Torsten
    A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully characterised using stationary absorption and emission spectroscopy. Time-resolved spectroscopic investigations on meso-mesityl substituted compounds revealed that reduction of the photo-excited BODIPY by the sacrificial agent occurs from an excited singlet state, while, in halogenated species, long-lived triplet states are present, determining electron transfer processes from the sacrificial agent. Quantum chemical calculations performed at the time-dependent density functional level of theory indicate that the differences in the photocatalytic performance of the present series of dyes can be correlated to the varying efficiency of intersystem crossing in non-halogenated and halogenated species and not to alterations in the energy levels introduced upon substitution.