Search Results

Now showing 1 - 10 of 56
  • Item
    Gradients of Al/Al2O3 nanostructures for screening mesenchymal stem cell proliferation and differentiation
    (Wuhan : Scientific Research Publishing, 2013) Veith, Michael; Dufloux, CĂ©cile; Ghaemi, Soraya Rasi; Cenk, Aktas; Voelcker, Nicolas H.
    By decomposing a molecular precursor we fabricated a novel surface based on an aluminium/aluminiumoxide composite incorporating nanotopography gradient to address high-throughput and fast analysis method for studying stem cell differentiation by nanostructures. Depending on the topography of the nanostructures, mesenchymal stem cells exhibit a diverse proliferation and differentiation behavior.
  • Item
    Multi-capillary column-ion mobility spectrometry (MCC-IMS) as a new method for the quantification of occupational exposure to sevoflurane in anaesthesia workplaces: an observational feasibility study
    (London : BioMed Central, 2015) Kunze, Nils; Weigel, Cathrin; Vautz, Wolfgang; Schwerdtfeger, Katrin; JĂ¼nger, Melanie; Quintel, Michael; Perl, Thorsten
    Background: Occupational exposure to sevoflurane has the potential to cause health damage in hospital personnel. Workplace contamination with the substance mostly is assessed by using photoacoustic infrared spectrometry with detection limits of 10 ppbv. Multi-capillary column-ion mobility spectrometry (MCC-IMS) could be an alternative technology for the quantification of sevoflurane in the room air and could be even more accurate because of potentially lower detection limits. The aim of this study was to test the hypothesis that MCC-IMS is able to detect and monitor very low concentrations of sevoflurane (<10 ppbv) and to evaluate the exposure of hospital personnel to sevoflurane during paediatric anaesthesia and in the post anaesthesia care unit (PACU). Methods: A MCC-IMS device was calibrated to several concentrations of sevoflurane and limits of detection (LOD) and quantification (LOQ) were calculated. Sevoflurane exposure of hospital personnel was measured at two anaesthesia workplaces and time-weighted average (TWA) values were calculated. Results: The LOD was 0.0068 ppbv and the LOQ was 0.0189 ppbv. During paediatric anaesthesia the mean sevoflurane concentration was 46.9 ppbv (8.0 - 314.7 ppbv) with TWA values between 5.8 and 45.7 ppbv. In the PACU the mean sevoflurane concentration was 27.9 ppbv (8.0 – 170.2 ppbv) and TWA values reached from 8.3 to 45.1 ppbv. Conclusions: MCC-IMS shows a significantly lower LOD and LOQ than comparable methods. It is a reliable technology for monitoring sevoflurane concentrations at anaesthesia workplaces and has a particular strength in quantifying low-level contaminations of sevoflurane. The exposure of the personnel working in these areas did not exceed recommended limits and therefore adverse health effects are unlikely.
  • Item
    Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2010) Beyreuther, Elke
    [no abstract available]
  • Item
    Abschlussbericht zum Verbundprojekt Campus PlasmaMed, Teilvorhaben Campus PlasmaMed 6
    (Hannover : Technische Informationsbibliothek (TIB), 2011) Weltmann, Klaus-Dieter
    [no abstract available]
  • Item
    Using SRM-MS to quantify nuclear protein abundance differences between adipose tissue depots of insulin-resistant mice
    (Rockville : American Society for Biochemistry and Molecular Biology, 2015) Ota, Asuka; Kovary, Kyle M.; Wu, Olivia H.; Ahrends, Robert; Shen, Wen-Jun; Costa, Maria J.; Feldman, Brian J.; Kraemer, Fredric B.; Teruel, Mary N.
    Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.
  • Item
    Substratinduzierte Veränderungen von Zellen im Kontakt mit Polymermaterialien : Schlussbericht
    (Dresden : Institut fĂ¼r Polymerforschung Dresden, 2002) IPF
    [no abstract available]
  • Item
    Integration der Positronen-Emissions-Tomographie in die Strahlentherapie mit hochenergetischen Photonen
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2009) Kunath, Daniela
    [no abstract available]
  • Item
    Proteome analyses of hepatocellular carcinoma
    (Sugar Land, TX : Xia & He Publishing, 2014) Megger, Dominik A.; Naboulsi, Naboulsi; Meyer, Helmut E.; Sitek, Barbara
    Proteomics has evolved into a powerful and widely used bioanalytical technique in the study of cancer, especially hepatocellular carcinoma (HCC). In this review, we provide an up to date overview of feasible proteome-analytical techniques for clinical questions. In addition, we present a broad summary of proteomic studies of HCC utilizing various technical approaches for the analysis of samples derived from diverse sources like HCC cell lines, animal models, human tissue and body fluids.
  • Item
    BMBF-Verbundprojekt: Campus PlasmaMed 2, Teilvorhaben: Campus PlasmaMed 9: Projekt: Mikrowellen-Plasmageneratoren : Schlussbericht ; Laufzeit des Vorhabens: 01.01.2011 - 30.09.2013
    (Hannover : Technische Informationsbibliothek (TIB), 2013) Gesche, R.; Bansleben, C.; Porteanu, H.-E.; Heinrich, W.
    [no abstract available]
  • Item
    Identification of Eps15 as antigen recognized by the monoclonal antibodies aa2 and ab52 of the wuerzburg hybridoma library against Drosophila brain
    (San Francisco, CA : Public Library of Science, 2011) Halder, Partho; Chen, Yi-chun; Brauckhoff, Janine; Hofbauer, Alois; Dabauvalle, Marie-Christine; Lewandrowski, Urs; Winkler, Christiane; Sickmann, Albert; Buchner, Erich
    The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies.