Search Results

Now showing 1 - 2 of 2
  • Item
    On wireless channel parameters for key generation in industrial environments
    (New York, NY : IEEE, 2017) Kreiser, Dan; Dyka, Zoya; Kornemann, Stephan; Wittke, Christian; Kabin, Ievgen; Stecklina, Oliver; Langendoerfer, Peter
    The advent of industry 4.0 with its idea of individualized mass production will significantly increase the demand for more flexibility on the production floor. Wireless communication provides this type of flexibility but puts the automation system at risk as potential attackers now can eavesdrop or even manipulate the messages exchanged even without getting access to the premises of the victim. Cryptographic means can prevent such attacks if applied properly. One of their core components is the distribution of keys. The generation of keys from channel parameters seems to be a promising approach in comparison to classical approaches based on public key cryptography as it avoids computing intense operations for exchanging keys. In this paper we investigated key generation approaches using channel parameters recorded in a real industrial environment. Our key results are that the key generation may take unpredictable long and that the resulting keys are of low quality with respect to the test for randomness we applied.
  • Item
    High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings
    (New York, NY : IEEE, 2016) Habisreuther, Tobias; Elsmann, T.; Graf, A.; Schmidt, M.A.
    Strain sensor designs and strain measurements based on single-crystal sapphire fibers with inscribed first-order fiber Bragg gratings for applications up to 600 °C are presented. We report on all the details of two different sensor designs; for instance, we show that the resolution of multimode sapphire fiber Bragg grating (SFBG) strain sensors is about l / l = ¼ 10-5 (10 µstrain), which is comparable with state-of-the-art high-temperature sensors. We apply our sensors for the determination of the thermal expansion coefficients of high-temperature steel alloys, showing a good match to known values. Hence, we believe that SFBG sensors may represent a promising alternative to currently used non-optic-based strain-detecting devices.