Search Results

Now showing 1 - 3 of 3
  • Item
    Faceting and metal-exchange catalysis in (010) β-Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy
    (New York : American Institute of Physics, 2018) Mazzolini, P.; Vogt, P.; Schewski, R.; Wouters, C.; Albrecht, M.; Bierwagen, Oliver
    We here present an experimental study on (010)-oriented -Ga2O3 thin films homoepitaxially grown by plasma assisted molecular beam epitaxy. We study the effect of substrate treatments (i.e., O-plasma and Ga-etching) and several deposition parameters (i.e., growth temperature and metal-to-oxygen flux ratio) on the resulting Ga2O3 surface morphology and growth rate. In situ and ex-situ characterizations identified the formation of (110) and (¯110)-facets on the nominally oriented (010) surface induced by the Ga-etching of the substrate and by several growth conditions, suggesting (110) to be a stable (yet unexplored) substrate orientation. Moreover, we demonstrate how metal-exchange catalysis enabled by an additional In-flux significantly increases the growth rate (>threefold increment) of monoclinic Ga2O3 at high growth temperatures, while maintaining a low surface roughness (rms < 0.5 nm) and preventing the incorporation of In into the deposited layer. This study gives important indications for obtaining device-quality thin films and opens up the possibility to enhance the growth rate in -Ga2O3 homoepitaxy on different surfaces [e.g., (100) and (001)] via molecular beam epitaxy.
  • Item
    Anisotropic optical properties of highly doped rutile SnO2: Valence band contributions to the Burstein-Moss shift
    (New York : American Institute of Physics, 2018) Feneberg, Martin; Lidig, Christian; White, Mark E.; Tsai, Min Y.; Speck, James S.; Bierwagen, Oliver; Galazka, Zbigniew; Goldhahn, Rüdiger
    The interband absorption of the transparent conducting semiconductor rutile stannic oxide (SnO2) is investigated as a function of increasing free electron concentration. The anisotropic dielectric functions of SnO2:Sb are determined by spectroscopic ellipsometry. The onsets of strong interband absorption found at different positions shift to higher photon energies with increasing free carrier concentration. For the electric field vector parallel to the optic axis, a low energy shoulder increases in prominence with increasing free electron concentration. We analyze the influence of different many-body effects and can model the behavior by taking into account bandgap renormalization and the Burstein-Moss effect. The latter consists of contributions from the conduction and the valence bands which can be distinguished because the nonparabolic conduction band dispersion of SnO2 is known already with high accuracy. The possible originsof the shoulder are discussed. The most likely mechanism is identified to be interband transitions at jkj > 0 from a dipole forbidden valence band.
  • Item
    Strain engineering of ferroelectric domains in KxNa1−xNbO3 epitaxial layers
    (Lausanne : Frontiers Media, 2017) Schwarzkopf, Jutta; Braun, Dorothee; Hanke, Michael; Uecker, Reinhard; Schmidbauer, Martin
    The application of lattice strain through epitaxial growth of oxide films on lattice mismatched perovskite-like substrates strongly influences the structural properties of ferroelectric domains and their corresponding piezoelectric behavior. The formation of different ferroelectric phases can be understood by a strain-phase diagram, which is calculated within the framework of the Landau–Ginzburg–Devonshire theory. In this paper, we illustrate the opportunity of ferroelectric domain engineering in the KxNa1−xNbO3 lead-free material system. In particular, the following examples are discussed in detail: (i) Different substrates (NdGaO3, SrTiO3, DyScO3, TbScO3, and GdScO3) are used to systematically tune the incorporated epitaxial strain from compressive to tensile. This can be exploited to adjust the NaNbO3 thin film surface orientation and, concomitantly, the vector of electrical polarization, which rotates from mainly vertical to exclusive in-plane orientation. (ii) In ferroelectric NaNbO3, thin films grown on rare-earth scandate substrates, highly regular stripe domain patterns are observed. By using different film thicknesses, these can be tailored with regard to domain periodicity and vertical polarization component. (iii) A featured potassium concentration of x = 0.9 of KxNa1−xNbO3 thin films grown on (110) NdScO3 substrates favors the coexistence of two equivalent, monoclinic, but differently oriented ferroelectric phases. A complicated herringbone domain pattern is experimentally observed which consists of alternating MC and a1a2 domains. The coexistence of different types of ferroelectric domains leads to polarization discontinuities at the domain walls, potentially enabling high piezoelectric responses. In each of these examples, the experimental results are in excellent agreement with predictions based on the linear elasticity theory.