Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Primary versus secondary contributions to particle number concentrations in the European boundary layer

2011, Reddington, C.L., Carslaw, K.S., Spracklen, D.V., Frontoso, M.G., Collins, L., Merikanto, J., Minikin, A., Hamburger, T., Coe, H., Kulmala, M., Aalto, P., Flentje, H., Plass-Dülmer, C., Birmili, W., Wiedensohler, A., Wehner, B., Tuch, T., Sonntag, A., O'Dowd, C.D., Jennings, S.G., Dupuy, R., Baltensperger, U., Weingartner, E., Hansson, H.-C., Tunved, P., Laj, P., Sellegri, K., Boulon, J., Putaud, J.-P., Gruening, C., Swietlicki, E., Roldin, P., Henzing, J.S., Moerman, M., Mihalopoulos, N., Kouvarakis, G., Ždímal, V., Zíková, N., Marinoni, A., Bonasoni, P., Duchi, R.

It is important to understand the relative contribution of primary and secondary particles to regional and global aerosol so that models can attribute aerosol radiative forcing to different sources. In large-scale models, there is considerable uncertainty associated with treatments of particle formation (nucleation) in the boundary layer (BL) and in the size distribution of emitted primary particles, leading to uncertainties in predicted cloud condensation nuclei (CCN) concentrations. Here we quantify how primary particle emissions and secondary particle formation influence size-resolved particle number concentrations in the BL using a global aerosol microphysics model and aircraft and ground site observations made during the May 2008 campaign of the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI). We tested four different parameterisations for BL nucleation and two assumptions for the emission size distribution of anthropogenic and wildfire carbonaceous particles. When we emit carbonaceous particles at small sizes (as recommended by the Aerosol Intercomparison project, AEROCOM), the spatial distributions of campaign-mean number concentrations of particles with diameter >50 nm (N50) and >100 nm (N100) were well captured by the model (R2≥0.8) and the normalised mean bias (NMB) was also small (−18% for N50 and −1% for N100). Emission of carbonaceous particles at larger sizes, which we consider to be more realistic for low spatial resolution global models, results in equally good correlation but larger bias (R2≥0.8, NMB = −52% and −29%), which could be partly but not entirely compensated by BL nucleation. Within the uncertainty of the observations and accounting for the uncertainty in the size of emitted primary particles, BL nucleation makes a statistically significant contribution to CCN-sized particles at less than a quarter of the ground sites. Our results show that a major source of uncertainty in CCN-sized particles in polluted European air is the emitted size of primary carbonaceous particles. New information is required not just from direct observations, but also to determine the "effective emission size" and composition of primary particles appropriate for different resolution models.

Loading...
Thumbnail Image
Item

Atmospheric data over a solar cycle: No connection between galactic cosmic rays and new particle formation

2010, Kulmala, M., Riipinen, I., Nieminen, T., Hulkkonen, M., Sogacheva, L., Manninen, H.E., Paasonen, P., Petäjä, T., Dal Maso, M., Aalto, P.P., Viljanen, A., Usoskin, I., Vainio, R., Mirme, S., Mirme, A., Minikin, A., Petzold, A., Hõrrak, U., Plaß-Dülmer, C., Birmili, W., Kerminen, V.-M.

Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008) that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII). We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.

Loading...
Thumbnail Image
Item

Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements

2015, Petetin, H., Beekmann, M., Colomb, A., van der Gon, H.A.C.Denier, Dupont, J.-C., Honoré, C., Michoud, V., Morille, Y., Perrussel, O., Schwarzenboeck, A., Sciare, J., Wiedensohler, A., Zhang, Q.J.

High uncertainties affect black carbon (BC) emissions, and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris, France, plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows for several error sources (e.g., representativeness, chemistry, plume lateral dispersion) to be minimized in the model used. The procedure is applied with the CHIMERE chemistry-transport model to three inventories – the EMEP inventory and the so-called TNO and TNO-MP inventories – over the month of July 2009. Various systematic uncertainty sources both in the model (e.g., boundary layer height, vertical mixing, deposition) and in observations (e.g., BC nature) are discussed and quantified, notably through sensitivity tests. Large uncertainty values are determined in our results, which limits the usefulness of the method to rather strongly erroneous emission inventories. A statistically significant (but moderate) overestimation is obtained for the TNO BC emissions and the EMEP and TNO-MP NOx emissions, as well as for the BC / NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC / NOx ratio at a ground site in Paris, which additionally suggests a spatially heterogeneous error in BC emissions over the agglomeration.

Loading...
Thumbnail Image
Item

Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

2016, Denjean, C., Cassola, F., Mazzino, A., Triquet, S., Chevaillier, S., Grand, N., Bourrianne, T., Momboisse, G., Sellegri, K., Schwarzenbock, A., Freney, E., Mallet, M., Formenti, P.

This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1–5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals over the Mediterranean. Measurements also showed that the coarse mode of mineral dust was conserved even after 5 days of transport in the Mediterranean, which contrasts with the gravitational depletion of large particles observed during the transport of dust plumes over the Atlantic. Simulations with the WRF mesoscale meteorological model highlighted a strong vertical turbulence within the dust layers that could prevent deposition of large particles during their atmospheric transport. This has important implications for the dust radiative effects due to surface dimming, atmospheric heating and cloud formation. The results presented here add to the observational data set necessary for evaluating the role of mineral dust on the regional climate and rainfall patterns in the western Mediterranean basin and understanding their atmospheric transport at global scale.

Loading...
Thumbnail Image
Item

A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity

2016, Su, Hang, Cheng, Yafang, Ma, Nan, Wang, Zhibin, Wang, Xiaoxiang, Pöhlker, Mira L., Nillius, Björn, Wiedensohler, Alfred, Pöschl, Ulrich

The activation and hygroscopicity of cloud condensation nuclei (CCN) are key to the understanding of aerosol–cloud interactions and their impact on climate. They can be measured by scanning the particle size and supersaturation in CCN measurements. The scanning of supersaturation is often time-consuming and limits the temporal resolution and performance of CCN measurements. Here we present a new approach, termed the broad supersaturation scanning (BS2) method, in which a range of supersaturation is simultaneously scanned, reducing the time interval between different supersaturation scans. The practical applicability of the BS2 approach is demonstrated with nano-CCN measurements of laboratory-generated aerosol particles. Model simulations show that the BS2 approach may also be applicable for measuring CCN activation of ambient mixed particles. Due to its fast response and technical simplicity, the BS2 approach may be well suited for aircraft and long-term measurements. Since hygroscopicity is closely related to the fraction of organics/inorganics in aerosol particles, a BS2-CCN counter can also serve as a complementary sensor for fast detection/estimation of aerosol chemical compositions.

Loading...
Thumbnail Image
Item

CARIBIC aircraft measurements of Eyjafjallajökull volcanic clouds in April/May 2010

2012, Rauthe-Schöch, A., Weigelt, A., Hermann, M., Martinsson, B.G., Baker, A.K., Heue, K.-P., Brenninkmeijer, C.A.M., Zahn, A., Scharffe, D., Eckhardt, S., Stohl, A., van Velthoven, P.F.J.

The Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) project investigates physical and chemical processes in the Earth's atmosphere using a Lufthansa Airbus long-distance passenger aircraft. After the beginning of the explosive eruption of the Eyjafjallajökull volcano on Iceland on 14 April 2010, the first CARIBIC volcano-specific measurement flight was carried out over the Baltic Sea and Southern Sweden on 20 April. Two more flights followed: one over Ireland and the Irish Sea on 16 May and the other over the Norwegian Sea on 19 May 2010. During these three special mission flights the CARIBIC container proved its merits as a comprehensive flying laboratory. The elemental composition of particles collected over the Baltic Sea during the first flight (20 April) indicated the presence of volcanic ash. Over Northern Ireland and the Irish Sea (16 May), the DOAS system detected SO2 and BrO co-located with volcanic ash particles that increased the aerosol optical depth. Over the Norwegian Sea (19 May), the optical particle counter detected a strong increase of particles larger than 400 nm diameter in a region where ash clouds were predicted by aerosol dispersion models. Aerosol particle samples collected over the Irish Sea and the Norwegian Sea showed large relative enhancements of the elements silicon, iron, titanium and calcium. Non-methane hydrocarbon concentrations in whole air samples collected on 16 and 19 May 2010 showed a pattern of removal of several hydrocarbons that is typical for chlorine chemistry in the volcanic clouds. Comparisons of measured ash concentrations and simulations with the FLEXPART dispersion model demonstrate the difficulty of detailed volcanic ash dispersion modelling due to the large variability of the volcanic cloud sources, extent and patchiness as well as the thin ash layers formed in the volcanic clouds.

Loading...
Thumbnail Image
Item

Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

2016, Rosati, Bernadette, Herrmann, Erik, Bucci, Silvia, Fierli, Federico, Cairo, Francesco, Gysel, Martin, Tillmann, Ralf, Größ, Johannes, Gobbi, Gian Paolo, Liberto, Luca Di, Di Donfrancesco, Guido, Wiedensohler, Alfred, Weingartner, Ernest, Virtanen, Annele, Mentel, Thomas F., Baltensperger, Urs

Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ∼  50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ∼  10:00 LT – local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ∼  12:00 LT) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. Lidar estimates captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in situ results, using fixed lidar ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are consistent with values for continental aerosol particles that can be expected in this region.

Loading...
Thumbnail Image
Item

Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece

2012, Mamouri, R.E., Papayannis, A., Amiridis, V., Müller, D., Kokkalis, P., Rapsomanikis, S., Karageorgos, E.T., Tsaknakis, G., Nenes, A., Kazadzis, S., Remoundaki, E.

A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15–31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20–21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single-scattering albedo ω) and mean complex refractive index (m)) at selected heights in the 2–3 km height region. We found that reff was 0.14–0.4 (±0.14) μm, ω was 0.63–0.88 (±0.08) (at 532 nm) and m ranged from 1.44 (±0.10) + 0.01 (±0.01)i to 1.55 (±0.12) + 0.06 (±0.02)i, in good agreement (only for the reff values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60%) and organic carbon (OC) content (0–50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.

Loading...
Thumbnail Image
Item

Observations of new particle formation in enhanced UV irradiance zones near cumulus clouds

2015, Wehner, B., Werner, F., Ditas, F., Shaw, R.A., Kulmala, M., Siebert, H.

During the CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados) campaign, the interaction between aerosol particles and cloud microphysical properties was investigated in detail, which also includes the influence of clouds on the aerosol formation. During two intensive campaigns in 2010 and 2011, helicopter-borne measurement flights were performed to investigate the thermodynamic, turbulent, microphysical, and radiative properties of trade-wind cumuli over Barbados. During these flights, 91 cases with increased aerosol particle number concentrations near clouds were detected. The majority of these cases are also correlated with enhanced irradiance in the ultraviolet (UV) spectral wavelength range. This enhancement reaches values up to a factor of 3.3 greater compared to background values. Thus, cloud boundaries provide a perfect environment for the production of precursor gases for new particle formation. Another feature of cloud edges is an increased turbulence, which may also enhance nucleation and particle growth. The observed events have a mean length of 100 m, corresponding to a lifetime of less than 300 s. This implies that particles with diameters of at least 7 nm grew several nanometers per minute, which corresponds to the upper end of values in the literature (Kulmala et al., 2004). Such high values cannot be explained by sulfuric acid alone; thus extremely low volatility organic compounds (ELVOCs) are probably involved here.

Loading...
Thumbnail Image
Item

An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

2016, Hermann, Markus, Weigelt, Andreas, Assmann, Denise, Pfeifer, Sascha, Müller, Thomas, Conrath, Thomas, Voigtländer, Jens, Heintzenberg, Jost, Wiedensohler, Alfred, Martinsson, Bengt G., Deshler, Terry, Brenninkmeijer, Carl A.M., Zahn, Andreas

The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System – Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130–1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.