Search Results

Now showing 1 - 4 of 4
  • Item
    Teleconnected food supply shocks
    (Bristol : IOP Publishing, 2016) Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix
    The 2008–2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.
  • Item
    Causes and trends of water scarcity in food production
    (Bristol : IOP Publishing, 2016) Porkka, Miina; Gerten, Dieter; Schaphoff, Sibyll; Siebert, Stefan; Matti Kummu, Matti
    The insufficiency of water resources to meet the needs of food production is a pressing issue that is likely to increase in importance in the future. Improved understanding of historical developments can provide a basis for addressing future challenges. In this study we analyse how hydroclimatic variation, cropland expansion and evolving agricultural practices have influenced the potential for food self-sufficiency within the last century. We consider a food production unit (FPU) to have experienced green–blue water (GBW) scarcity if local renewable green (in soils) and blue water resources (in rivers, lakes, reservoirs, aquifers) were not sufficient for producing a reference food supply of 3000 kcal with 20% animal products for all inhabitants. The number of people living in FPUs affected by GBW scarcity has gone up from 360 million in 1905 (21% of world population at the time) to 2.2 billion (34%) in 2005. During this time, GBW scarcity has spread to large areas and become more frequent in regions where it occurs. Meanwhile, cropland expansion has increased green water availability for agriculture around the world, and advancements in agronomic practices have decreased water requirements of producing food. These efforts have improved food production potential and thus eased GBW scarcity considerably but also made possible the rapid population growth of the last century. The influence of modern agronomic practices is particularly striking: if agronomic practices of the early 1900s were applied today, it would roughly double the population under GBW scarcity worldwide.
  • Item
    The role of storage dynamics in annual wheat prices
    (Bristol : IOP Publishing, 2017) Schewe, Jacob; Otto, Christian; Frieler, Katja; Bodirsky, Benjamin Leo; Kriegler, Elmar; Lotze-Campen, Hermann; Popp, Alexander
    Identifying the drivers of global crop price fluctuations is essential for estimating the risks of unexpected weather-induced production shortfalls and for designing optimal response measures. Here we show that with a consistent representation of storage dynamics, a simple supply–demand model can explain most of the observed variations in wheat prices over the last 40 yr solely based on time series of annual production and long term demand trends. Even the most recent price peaks in 2007/08 and 2010/11 can be explained by additionally accounting for documented changes in countries' trade policies and storage strategies, without the need for external drivers such as oil prices or speculation across different commodity or stock markets. This underlines the critical sensitivity of global prices to fluctuations in production. The consistent inclusion of storage into a dynamic supply-demand model closes an important gap when it comes to exploring potential responses to future crop yield variability under climate and land-use change.
  • Item
    Integrated crop water management might sustainably halve the global food gap
    (Bristol : IOP Publishing, 2016) Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J.
    As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an 'ambitious' scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.