Search Results

Now showing 1 - 2 of 2
  • Item
    Ion-particle interactions during particle formation and growth at a coniferous forest site in central Europe
    (München : European Geopyhsical Union, 2014) Gonser, S.G.; Klein, F.; Birmili, W.; Größ, J.; Kulmala, M.; Manninen, H.E.; Wiedensohler, A.; Held, A.
    In this work, we examined the interaction of ions and neutral particles during atmospheric new particle formation (NPF) events. The analysis is based on simultaneous field measurements of atmospheric ions and total particles using a neutral cluster and air ion spectrometer (NAIS) across the diameter range 2–25 nm. The Waldstein research site is located in a spruce forest in NE Bavaria, Southern Germany, known for enhanced radon concentrations, presumably leading to elevated ionization rates. Our observations show that the occurrence of the ion nucleation mode preceded that of the total particle nucleation mode during all analyzed NPF events. The time difference between the appearance of 2 nm ions and 2 nm total particles was typically about 20 to 30 min. A cross correlation analysis showed a rapid decrease of the time difference between the ion and total modes during the growth process. Eventually, this time delay vanished when both ions and total particles did grow to larger diameters. Considering the growth rates of ions and total particles separately, total particles exhibited enhanced growth rates at diameters below 15 nm. This observation cannot be explained by condensation or coagulation, because these processes would act more efficiently on charged particles compared to neutral particles. To explain our observations, we propose a mechanism including recombination and attachment of continuously present cluster ions with the ion nucleation mode and the neutral nucleation mode, respectively.
  • Item
    Observation of viscosity transition in α-pinene secondary organic aerosol
    (München : European Geopyhsical Union, 2016) Järvinen, Emma; Ignatius, Karoliina; Nichman, Leonid; Kristensen, Thomas B.; Fuchs, Claudia; Hoyle, Christopher R.; Höppel, Niko; Corbin, Joel C.; Craven, Jill; Duplissy, Jonathan; Ehrhart, Sebastian; El Haddad, Imad; Frege, Carla; Gordon, Hamish; Jokinen, Tuija; Kallinger, Peter; Kirkby, Jasper; Kiselev, Alexei; Naumann, Karl-Heinz; Petäjä, Tuukka; Pinterich, Tamara; Prevot, Andre S.H.; Saathoff, Harald; Schiebel, Thea; Sengupta, Kamalika; Simon, Mario; Slowik, Jay G.; Tröstl, Jasmin; Virtanen, Annele; Vochezer, Paul; Vogt, Steffen; Wagner, Andrea C.; Wagner, Robert; Williamson, Christina; Winkler, Paul M.; Yan, Chao; Baltensperger, Urs; Donahue, Neil M.; Flagan, Rick C.; Gallagher, Martin; Hansel, Armin; Kulmala, Markku; Stratmann, Frank; Worsnop, Douglas R.; Möhler, Ottmar; Leisner, Thomas; Schnaiter, Martin
    Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the Cosmics Leaving Outdoor Droplets (CLOUD) experiment at The European Organisation for Nuclear Research (CERN), we deployed a new in situ optical method to detect the viscous state of α-pinene SOA particles and measured their transition from the amorphous highly viscous state to states of lower viscosity. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical particles at relative humidities near the deliquescence point. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to a spherical shape was observed as the RH was increased to between 35 % at −10 °C and 80 % at −38 °C, confirming previous calculations of the viscosity-transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical, and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.