Search Results

Now showing 1 - 8 of 8
  • Item
    Funnel-shaped microstructures for strong reversible adhesion
    (Hoboken, NJ : Wiley, 2017) Fischer, Sarah C.L.; Groß, Katja; Abad, Oscar Torrents; Becker, MIchael M.; Park, Euiyoung; Hensel, René; Arzt, Eduard
    The potential of a new design of adhesive microstructures in the micrometer range for enhanced dry adhesion is investigated. Using a two-photon lithography system, complex 3D master structures of funnel-shaped microstructures are fabricated for replication into poly(ethylene glycol) dimethacrylate polymer. The diameter, the flap thickness, and the opening angle of the structures are varied systematically. The adhesion of single structures is characterized using a triboindenter system equipped with a flat diamond punch. The pull-off stresses obtained reaches values up to 5.6 MPa, which is higher than any values reported in literature for artificial dry adhesives. Experimental and numerical results suggest a characteristic attachment mechanism that leads to intimate contact formation from the edges toward the center of the structures. van der Waals interactions most likely dominate the adhesion, while contributions by suction or capillarity play only a minor role. Funnel-shaped microstructures are a promising concept for strong and reversible adhesives, applicable in novel pick and place handling systems or wall-walking robots.
  • Item
    Monitoring the contact stress distribution of gecko-inspired adhesives using mechano-sensitive surface coatings
    (Washington D.C. : American Chemical Society, 2018) Neubauer, Jens W.; Xue, Longjian; Erath, Johann; Drotlef, Dirk-Michael; del Campo, Aránzazu; Fery, Andreas
    The contact geometry of microstructured adhesive surfaces is of high relevance for adhesion enhancement. Theoretical considerations indicate that the stress distribution in the contact zone is crucial for the detachment mechanism, but direct experimental evidence is missing so far. In this work, we propose a method that allows, for the first time, the detection of local stresses at the contact area of biomimetic adhesive microstructures during contact formation, compression and detachment. We use a mechano-sensitive polymeric layer, which turns mechanical stresses into changes of fluorescence intensity. The biomimetic surface is brought into contact with this layer in a well-defined fashion using a microcontact printer, while the contact area is monitored with fluorescence microscopy in situ. Thus, changes in stress distribution across the contact area during compression and pull-off can be visualized with a lateral resolution of 1 μm. We apply this method to study the enhanced adhesive performance of T-shaped micropillars, compared to flat punch microstructures. We find significant differences in the stress distribution of the both differing contact geometries during pull-off. In particular, we find direct evidence for the suppression of crack nucleation at the edge of T-shaped pillars, which confirms theoretical models for the superior adhesive properties of these structures.
  • Item
    A study of the adhesive foot of the gecko: Translation of a publication by Franz Weitlaner
    (Milton Park : Taylor & Francis, 2015) Kroner, Elmar; Davis, Chelsea S.
    In recent years, hundreds of scientific studies have been published regarding gecko-inspired adhesives. The primary reason for this increasing interest lies in the unique properties which are combined in the adhesive system of the gecko: this natural system can quickly and repeatedly adhere to different surface chemistry and roughness without the use of adhesion-mediating fluids. Although these properties seem to be inconspicuous at first, there is no man-made system currently available which successfully combines all of these properties and competes with the biological adhesive system. However, there are many applications which may benefit from an artificial adhesion system inspired by geckos, ranging from climbing robots and handling systems to biomedical patches and household objects.
  • Item
    Numerical simulation of the edge stress singularity and the adhesion strength for compliant mushroom fibrils adhered to rigid substrates
    (Amsterdam : Elsevier, 2016) Balijepalli, R.G.; Begley, M.R.; Fleck, N.A.; McMeeking, R.M.; Arzt, E.
    Bio-inspired adhesion of micropatterned surfaces due to intermolecular interactions has attracted much research interest over the last decade. Experiments show that the best adhesion is achieved with compliant “mushroom”-shaped fibrils. This paper analyses numerically the effects of different mushroom shapes on adhesion to a rigid substrate. When a remote stress is applied on the free end of a fibril perfectly bonded to a rigid substrate, the resultant stress distribution along the fibril is found to change dramatically between the straight punch and mushroom fibrils. A singular stress field is present at the edge of the fibril where it contacts the substrate and, in this work, the amplitude of the singularity is evaluated for fibrils perfectly bonded to a flat substrate so that sliding cannot occur there. This exercise is carried out for fibril geometries involving combinations of different diameters and thicknesses of the mushroom cap. By assuming a pre-existing detachment length at the corner where the stress singularity lies, we predict the adhesive strength for various mushroom cap shapes. Our study shows that a smaller stalk diameter and a thinner mushroom cap lead to higher adhesive strengths. A limited number of results are also given for other shapes, including those having a fillet radius connecting the stalk to the cap. The results support the rational optimization of synthetic micropatterned adhesives.
  • Item
    Fibrillar elastomeric micropatterns create tunable adhesion even to rough surfaces
    (Hoboken, NJ : Wiley, 2016) Barreau, Viktoriia; Hensel, René; Guimard, Nathalie K.; Ghatak, Animangsu; McMeeking, Robert M.; Arzt, Eduard
    Biologically inspired, fibrillar dry adhesives continue to attract much attention as they are instrumental for emerging applications and technologies. To date, the adhesion of micropatterned gecko-inspired surfaces has predominantly been tested on stiff, smooth substrates. However, all natural and almost all artificial surfaces have roughnesses on one or more different length scales. In the present approach, micropillar-patterned PDMS surfaces with superior adhesion to glass substrates with different roughnesses are designed and analyzed. The results reveal for the first time adhesive and nonadhesive states depending on the micropillar geometry relative to the surface roughness profile. The data obtained further demonstrate that, in the adhesive regime, fibrillar gecko-inspired adhesive structures can be used with advantage on rough surfaces; this finding may open up new applications in the fields of robotics, biomedicine, and space exploration.
  • Item
    Adhesion characteristics of PDMS surfaces during repeated pull-off force measurements
    (Hoboken, NJ : Wiley, 2010) Kroner, Elmar; Arzt, Eduard; Maboudian, Roya
    To mimic the adhesive effects of gecko toes, artificial surfaces have been manufactured recently using polydimethylsiloxanes (PDMS). However, the effects of repeated contacts on the adhesive properties remain largely unexplored. In this paper we report on the effect of repeated pull-off force measurements on the adhesion behavior of PDMS (polymer kit Sylgard 184, Dow Corning) tested with a borosilicate glass probe. A decrease in pull-off force with increase in number of test cycles is found until a plateau is reached. The initial value and the rate of change in pull-off force strongly depend on the sample preparation procedure, including curing time and cross-linking. It is proposed that the behavior is due to steady coverage of the probe with free oligomers. The results are crucial for developing reusable, durable, and residue-free bioinspired adhesives.
  • Item
    Surface softening in metal-ceramic sliding contacts: An experimental and numerical investigation
    (Washington D.C. : American Chemical Society, 2015) Stoyanov, Pantcho; Merz, Rolf; Romero, Pedro A.; Wählisch, Felix C.; Torrents Abad, Oscar; Gralla, Robert; Stemmer, Priska; Kopnarski, Michael; Moseler, Michael; Bennewitz, Roland; Dienwiebel, Martin
    This study investigates the tribolayer properties at the interface of ceramic/metal (i.e., WC/W) sliding contacts using various experimental approaches and classical atomistic simulations. Experimentally, nanoindentation and micropillar compression tests, as well as adhesion mapping by means of atomic force microscopy, are used to evaluate the strength of tungsten?carbon tribolayers. To capture the influence of environmental conditions, a detailed chemical and structural analysis is performed on the worn surfaces by means of XPS mapping and depth profiling along with transmission electron microscopy of the debris particles. Experimentally, the results indicate a decrease in hardness and modulus of the worn surface compared to the unworn one. Atomistic simulations of nanoindentation on deformed and undeformed specimens are used to probe the strength of the WC tribolayer and despite the fact that the simulations do not include oxygen, the simulations correlate well with the experiments on deformed and undeformed surfaces, where the difference in behavior is attributed to the bonding and structural differences of amorphous and crystalline W-C. Adhesion mapping indicates a decrease in surface adhesion, which based on chemical analysis is attributed to surface passivation.
  • Item
    Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates
    (Bristol : IOP Publishing, 2015) Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard
    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3–4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.