Search Results

Now showing 1 - 4 of 4
  • Item
    Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar
    (München : European Geopyhsical Union, 2016) Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Liberto, Luca Di; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs
    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ∼  50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ∼  10:00 LT – local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ∼  12:00 LT) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. Lidar estimates captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in situ results, using fixed lidar ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are consistent with values for continental aerosol particles that can be expected in this region.
  • Item
    Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques
    (München : European Geopyhsical Union, 2016) Lübken, Franz-Josef; Baumgarten, Gerd; Hildebrand, Jens; Schmidlin, Francis J.
    We present the first comparison of a new lidar technique to measure winds in the middle atmosphere, called DoRIS (Doppler Rayleigh Iodine Spectrometer), with a rocket-borne in situ method, which relies on measuring the horizontal drift of a target (“starute”) by a tracking radar. The launches took place from the Andøya Space Center (ASC), very close to the ALOMAR observatory (Arctic Lidar Observatory for Middle Atmosphere Research) at 69° N. DoRIS is part of a steerable twin lidar system installed at ALOMAR. The observations were made simultaneously and with a horizontal distance between the two lidar beams and the starute trajectories of typically 0–40 km only. DoRIS measured winds from 14 March 2015, 17:00 UTC, to 15 March 2015, 11:30 UTC. A total of eight starute flights were launched successfully from 14 March, 19:00 UTC, to 15 March, 00:19 UTC. In general there is excellent agreement between DoRIS and the in situ measurements, considering the combined range of uncertainties. This concerns not only the general height structures of zonal and meridional winds and their temporal developments, but also some wavy structures. Considering the comparison between all starute flights and all DoRIS observations in a time period of ±20 min around each individual starute flight, we arrive at mean differences of typically ±5–10 m s−1 for both wind components. Part of the remaining differences are most likely due to the detection of different wave fronts of gravity waves. There is no systematic difference between DoRIS and the in situ observations above 30 km. Below ∼ 30 km, winds from DoRIS are systematically too large by up to 10–20 m s−1, which can be explained by the presence of aerosols. This is proven by deriving the backscatter ratios at two different wavelengths. These ratios are larger than unity, which is an indication of the presence of aerosols.
  • Item
    Vertically resolved dust optical properties during SAMUM: Tinfou compared to Ouarzazate
    (Milton Park : Taylor & Francis, 2017) Heese, Birgit; Althausen, Dietrich; Dinter, Tilman; Esselborn, Michael; Müller, Thomas; Tesche, Matthias; Wiegner, Matthias
    Vertical profiles of dust key optical properties are presented from measurements during the Saharan Mineral Dust Experiment (SAMUM) by Raman and depolarization lidar at two ground-based sites and by airborne high spectral resolution lidar. One of the sites, Tinfou, is located close to the border of the Sahara in Southern Morocco and was the main in situ site during SAMUM. The other site was Ouarzazate airport, the main lidar site. From the lidar measurements the spatial distribution of the dust between Tinfou and Ouarzazate was derived for 1 d. The retrieved profiles of backscatter and extinction coefficients and particle depolarization ratios show comparable dust optical properties, a similar vertical structure of the dust layer, and a height of about 4 km asl at both sites. The airborne cross-section of the extinction coefficient at the two sites confirms the low variability in dust properties. Although the general picture of the dust layer was similar, the lidar measurements reveal a higher dust load closer to the dust source. Nevertheless, the observed intensive optical properties were the same. These results indicate that the lidar measurements at two sites close to the dust source are both representative for the SAMUM dust conditions.
  • Item
    Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Müller, Detlef; Gross, Silke; Ansmann, Albert; Althausen, Dietrich; Freudenthaler, Volker; Weinzierl, Bernadett; Veira, Andreas; Petzold, Andreas
    Lidar measurements of mixed dust/smoke plumes over the tropical Atlantic ocean were carried out during the winter campaign of SAMUM-2 at Cape Verde. Profiles of backscatter and extinction coefficients, lidar ratios, and Ångstr¨om exponents related to pure biomass-burning aerosol from southern West Africa were extracted from these observations. Furthermore, these findings were used as input for an inversion algorithm to retrieve microphysical properties of pure smoke. Seven measurement days were found suitable for the procedure of aerosol-type separation and successive inversion of optical data that describe biomass-burning smoke. We inferred high smoke lidar ratios of 87 ± 17 sr at 355 nm and 79 ± 17 sr at 532 nm. Smoke lidar ratios and Ångstr¨om exponents are higher compared to the ones for the dust/smoke mixture. These numbers indicate higher absorption and smaller sizes for pure smoke particles compared to the dust/smoke mixture. Inversion of the smoke data set results in mean effective radii of 0.22 ± 0.08 μm with individual results varying between 0.10 and 0.36 μm. The single-scattering albedo for pure biomass-burning smoke was found to vary between 0.63 and 0.89 with a very low mean value of 0.75 ± 0.07. This is in good agreement with findings of airborne in situ measurements which showed values of 0.77 ± 0.03. Effective radii from the inversion were similar to the ones found for the fine mode of the in situ size distributions.