Search Results

Now showing 1 - 2 of 2
  • Item
    Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields
    (Amsterdam : Elsevier, 2011) Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.
    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply.
  • Item
    Awassi sheep keeping in the Arabic steppe in relation to nitrous oxide emission from soil
    (Amsterdam : Elsevier, 2013) Hijazi, Omar; Berg, Werner; Moussa, Samouil; Ammon, Christian; von Bobrutzki, Kristina; Brunsch, Reiner
    Sheep husbandry is the main source of income for farmers in arid zones. Increasing sheep production on steppes may increase the greenhouse gas production. The objective of this study was to investigate the nitrous oxide (N2O) emissions from the steppes for Awassi sheep keeping and feed cropping in arid zones such as Syria. The methodology developed by the Intergovernmental Panel on Climate Change (IPCC) was used to estimate N2O emissions. A survey was conducted on 64 farms in Syria to gather data for analysis. Precipitation and crop yield data from 2001 to 2009 were also used for calculation and modelling. Sheep-keeping systems, precipitation, year and the region have significant effects on N2O emissions (p<0.05). Emissions of N2O from lands with extensive, semi-intensive and intensive systems were 0.30 ± 0.093, 0.598± 0.113 and 2.243± 0.187 kg sheep1year1, respectively. Crop production was higher in regions with high precipitation levels, which helped to reduce N2O emissions. Using more residuals of wheat, cotton and soya as feed for sheep in the keeping systems evaluated may decrease the overuse of steppe regions and N2O emissions. Nitrous oxide emissions of N2O from sheep-keeping areas can be reduced by changing sheep-keeping systems and increasing the crop production in arid zones through artificial irrigation.