Search Results

Now showing 1 - 3 of 3
  • Item
    Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models
    (München : European Geopyhsical Union, 2014) Levermann, A.; Winkelmann, R.; Nowicki, S.; Fastook, J.L.; Frieler, K.; Greve, R.; Hellmer, H.H.; Martin, M.A.; Meinshausen, M.; Mengel, M.; Payne, A.J.; Pollard, D.; Sato, T.; Timmermann, R.; Wang, W.L.; Bindschadler, R.A.
    The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.
  • Item
    Awassi sheep keeping in the Arabic steppe in relation to nitrous oxide emission from soil
    (Amsterdam : Elsevier, 2013) Hijazi, Omar; Berg, Werner; Moussa, Samouil; Ammon, Christian; von Bobrutzki, Kristina; Brunsch, Reiner
    Sheep husbandry is the main source of income for farmers in arid zones. Increasing sheep production on steppes may increase the greenhouse gas production. The objective of this study was to investigate the nitrous oxide (N2O) emissions from the steppes for Awassi sheep keeping and feed cropping in arid zones such as Syria. The methodology developed by the Intergovernmental Panel on Climate Change (IPCC) was used to estimate N2O emissions. A survey was conducted on 64 farms in Syria to gather data for analysis. Precipitation and crop yield data from 2001 to 2009 were also used for calculation and modelling. Sheep-keeping systems, precipitation, year and the region have significant effects on N2O emissions (p<0.05). Emissions of N2O from lands with extensive, semi-intensive and intensive systems were 0.30 ± 0.093, 0.598± 0.113 and 2.243± 0.187 kg sheep1year1, respectively. Crop production was higher in regions with high precipitation levels, which helped to reduce N2O emissions. Using more residuals of wheat, cotton and soya as feed for sheep in the keeping systems evaluated may decrease the overuse of steppe regions and N2O emissions. Nitrous oxide emissions of N2O from sheep-keeping areas can be reduced by changing sheep-keeping systems and increasing the crop production in arid zones through artificial irrigation.
  • Item
    Mitigation choices impact carbon budget size compatible with low temperature goals
    (Bristol : IOP Publishing, 2015) Rogelj, Joeri; Reisinger, Andy; McCollum, David L.; Knutti, Reto; Riahi, Keywan; Meinshausen, Malte
    Global-mean temperature increase is roughly proportional to cumulative emissions of carbon-dioxide (CO2). Limiting global warming to any level thus implies a finite CO2 budget. Due to geophysical uncertainties, the size of such budgets can only be expressed in probabilistic terms and is further influenced by non-CO2 emissions. We here explore how societal choices related to energy demand and specific mitigation options influence the size of carbon budgets for meeting a given temperature objective. We find that choices that exclude specific CO2 mitigation technologies (like Carbon Capture and Storage) result in greater costs, smaller compatible CO2 budgets until 2050, but larger CO2 budgets until 2100. Vice versa, choices that lead to a larger CO2 mitigation potential result in CO2 budgets until 2100 that are smaller but can be met at lower costs. In most cases, these budget variations can be explained by the amount of non-CO2 mitigation that is carried out in conjunction with CO2, and associated global carbon prices that also drive mitigation of non-CO2 gases. Budget variations are of the order of 10% around their central value. In all cases, limiting warming to below 2 °C thus still implies that CO2 emissions need to be reduced rapidly in the coming decades.