Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Water footprint analysis for the assessment of milk production in Brandenburg (Germany)

2010, Drastig, K., Prochnow, A., Kraatz, S., Klauss, H., Plöchl, M.

The working group "Adaptation to Climate Change" at the Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB) is introduced. This group calculates the water footprint for agricultural processes and farms, distinguished into green water footprint, blue water footprint, and dilution water footprint. The green and blue water demand of a dairy farm plays a pivotal role in the regional water balance. Considering already existing and forthcoming climate change effects there is a need to determine the water cycle in the field and in housing for process chain optimisation for the adaptation to an expected increasing water scarcity. Resulting investments to boost water productivity and to improve water use efficiency in milk production are two pathways to adapt to climate change effects. In this paper the calculation of blue water demand for dairy farming in Brandenburg (Germany) is presented. The water used for feeding, milk processing, and servicing of cows over the time period of ten years was assessed in our study. The preliminary results of the calculation of the direct blue water footprint shows a decreasing water demand in the dairy production from the year 1999 with 5.98×109 L/yr to a water demand of 5.00×109 L/yr in the year 2008 in Brandenburg because of decreasing animal numbers and an improved average milk yield per cow. Improved feeding practices and shifted breeding to greater-volume producing Holstein-Friesian cow allow the production of milk in a more water sustainable way. The mean blue water consumption for the production of 1 kg milk in the time period between 1999 to 2008 was 3.94±0.29 L. The main part of the consumed water seems to stem from indirect used green water for the production of feed for the cows.

Loading...
Thumbnail Image
Item

Comparison of the effects of quarter-individual and conventional milking systems on milkability traits

2011, Müller, Anika B., Rose-Meierhöfer, Sandra, Ammon, Christian, Brunsch, Reiner

This study was carried out to investigate a new quarter-individual milking system called MultiLactor® (Siliconform GmbH, Türkheim, Germany). The MultiLactor enables milking on quarter level basis with low vacuum (37 kPa), sequential pulsation and periodic air inlet. Within the same dairy farm, the influence of this quarter-individual milking system (MULTI) on milkability traits was compared with a conventional milking system (CON). CON was equipped with a conventional milking cluster and used alternating pulsation. Vacuum level was adjusted to 40 kPa. For the study, 84 Holstein Friesian cows were randomly selected and uniformly divided into two herds. During the 30-week survey, the milk flow curves were recorded every other week by using a LactoCorder (WMB, Balgach, Switzerland). Significant differences (P<0.05) between both milking systems were found for all milk flow traits, except for milk yield and decline phase. Concerning the incline (tAN) and plateau (tPL) phase, large differences existed between MULTI and CON. The estimated value of tAN calculated for MULTI (29.4 s) took only half of the time when calculated for CON (56.4 s). The estimated value of tPL at CON was reduced by 1.43 min (35 %) compared to MULTI. Milking process at MULTI (8.49 min) took longer time than for CON (7.43 min). From the study, it was concluded that the effect of shorter tAN in the quarter-individual milked cows may be related to additional prestimulation by an actuator. In contrast, the longer milking time in MULTI is possibly caused by lower vacuum level and periodic air inlet.

Loading...
Thumbnail Image
Item

Application of Terahertz radiation to soil measurements: Initial results

2011, Dworak, Volker, Augustin, Sven, Gebbers, Robin

Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future.

Loading...
Thumbnail Image
Item

Field inter-comparison of eleven atmospheric ammonia measurement techniques

2010, von Bobrutzki, K., Braban, C.F., Famulari, D., Jones, S.K., Blackall, T., Smith, T.E.L., Blom, M., Coe, H., Gallagher, M., Ghalaieny, M., McGillen, M.R., Percival, C.J., Whitehead, J.D., Ellis, R., Murphy, J., Mohacsi, A., Pogany, A., Junninen, H., Rantanen, S., Sutton, M.A., Nemitz, E.

Eleven instruments for the measurement of ambient concentrations of atmospheric ammonia gas (NH3), based on eight different measurement methods were inter-compared above an intensively managed agricultural field in late summer 2008 in Southern Scotland. To test the instruments over a wide range of concentrations, the field was fertilised with urea midway through the experiment, leading to an increase in the average concentration from 10 to 100 ppbv. The instruments deployed included three wet-chemistry systems, one with offline analysis (annular rotating batch denuder, RBD) and two with online-analysis (Annular Denuder sampling with online Analysis, AMANDA; AiRRmonia), two Quantum Cascade Laser Absorption Spectrometers (a large-cell dual system; DUAL-QCLAS, and a compact system; c-QCLAS), two photo-acoustic spectrometers (WaSul-Flux; Nitrolux-100), a Cavity Ring Down Spectrosmeter (CRDS), a Chemical Ionisation Mass Spectrometer (CIMS), an ion mobility spectrometer (IMS) and an Open-Path Fourier Transform Infra-Red (OP-FTIR) Spectrometer. The instruments were compared with each other and with the average concentration of all instruments. An overall good agreement of hourly average concentrations between the instruments (R2>0.84), was observed for NH3 concentrations at the field of up to 120 ppbv with the slopes against the average ranging from 0.67 (DUAL-QCLAS) to 1.13 (AiRRmonia) with intercepts of −0.74 ppbv (RBD) to +2.69 ppbv (CIMS). More variability was found for performance for lower concentrations (<10 ppbv). Here the main factors affecting measurement precision are (a) the inlet design, (b) the state of inlet filters (where applicable), and (c) the quality of gas-phase standards (where applicable). By reference to the fast (1 Hz) instruments deployed during the study, it was possible to characterize the response times of the slower instruments.

Loading...
Thumbnail Image
Item

Energy balances and greenhouse gas emissions of palm oil biodiesel in Indonesia

2011, Harsono, Soni Sisbudi, Prochnow, Annette, Grundmann, Philipp, Hansen, Anja, Hallmann, Claudia

This study presents a cradle-to-gate assessment of the energy balances and greenhouse gas (GHG) emissions of Indonesian palm oil biodiesel production, including the stages of land-use change (LUC), agricultural phase, transportation, milling, biodiesel processing, and comparing the results from different farming systems, including company plantations and smallholder plantations (either out growers or independent growers) in different locations in Kalimantan and Sumatra of Indonesia. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6–49.2 GJ t 1 biodiesel yr 1) as well as GHG emissions (1969.6–5626.4 kg CO2eq t 1 biodiesel yr 1). The output to input ratios are positive in all cases. The largest GHG emissions result from LUC effects, followed by the transesterification, fertilizer production, agricultural production processes, milling, and transportation. Ecosystem carbon payback times range from 11 to 42 years.

Loading...
Thumbnail Image
Item

Soil pH mapping with an on-the-go sensor

2011, Schirrmann, Michael, Gebbers, Robin, Kramer, Eckart, Seidel, Jan

Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH ManagerTM, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH ManagerTM under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH ManagerTM were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r2) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.

Loading...
Thumbnail Image
Item

Agricultural Water Management in Brandenburg

2011, Drastig, Katrin, Prochnow, Annette, Baumecker, Michael, Berg, Werner, Brunsch, Reiner

The present study explores whether regional water resources can be used more efficiently by Brandenburg’s agricultural systems. A systematic analysis of measures to raise the water efficiency follows the description of agriculture in Brandenburg today. Brandenburg’s agricultural systems are separated into three sections: soils, plant production and livestock farming. Within these sections measures to increase water efficiency are listed and analysed with reference to five objective criteria for raising water use efficiency. In the soil section the measures soil tillage and humus conservation management are assigned to the criteria. The following fields in the plant production section are similarly investigated: breeding, seeding, fertilisation, tactically chosen crops, avoidance of competition by herbicide use and efficient irrigation practices as well as watersaving storage and cleaning of field crops. In livestock farming the supply of drinking water and cleaning and cooling processes are analysed. In view of the complexity of the agricultural farming systems in Brandenburg, general measures to raise water use efficiency could not be derived. Sitespecific tillage practices and crop patterns adjusted to the recent weather conditions may reflect the specific diversity of Brandenburg more efficiently.

Loading...
Thumbnail Image
Item

Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears

2011, Bauriegel, Elke, Giebel, Antje, Herppich, Werner B.

Head blight on wheat, caused by Fusarium spp., is a serious problem for both farmers and food production due to the concomitant production of highly toxic mycotoxins in infected cereals. For selective mycotoxin analyses, information about the on-field status of infestation would be helpful. Early symptom detection directly on ears, together with the corresponding geographic position, would be important for selective harvesting. Hence, the capabilities of various digital imaging methods to detect head blight disease on winter wheat were tested. Time series of images of healthy and artificially Fusarium-infected ears were recorded with a laboratory hyperspectral imaging system (wavelength range: 400 nm to 1,000 nm). Disease-specific spectral signatures were evaluated with an imaging software. Applying the ‘Spectral Angle Mapper’ method, healthy and infected ear tissue could be clearly classified. Simultaneously, chlorophyll fluorescence imaging of healthy and infected ears, and visual rating of the severity of disease was performed. Between six and eleven days after artificial inoculation, photosynthetic efficiency of infected compared to healthy ears decreased. The severity of disease highly correlated with photosynthetic efficiency. Above an infection limit of 5% severity of disease, chlorophyll fluorescence imaging reliably recognised infected ears. With this technique, differentiation of the severity of disease was successful in steps of 10%. Depending on the quality of chosen regions of interests, hyperspectral imaging readily detects head blight 7 d after inoculation up to a severity of disease of 50%. After beginning of ripening, healthy and diseased ears were hardly distinguishable with the evaluated methods.